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Sheet 01: Loop integrals and dispersion relations
To be handed in to your tutors by Friday, May 2nd

Problem 1 - A two-loop massless bubble

The goal of this exercise is to get some familiarity with dimensional regularisation and with the idea of
Integration-By-Parts identities (IBPs). We will use them to calculate analytically the following two-loop
integral in dimensional regularisation (d = 4− 2ϵ)

I(p2) = -

&%
'$

p
=

∫
ddq1
(2π)d

∫
ddq2
(2π)d

1

q21 (q1 − p)2 (q1 − q2)2 q22 (q2 − p)2
. (1)

This integral is finite for ϵ = 0 and is given by the very simple expression

I(p2) = − 6 ζ3
(4 π)4 p2

+O(ϵ) ,

where ζ3 =
∑∞

n=1
1
n3 = 1.20206... is the Riemann zeta function. However, deriving this result by means

of direct integration is difficult. IBPs provide instead a much more elegant way.

1. Start off by performing a Wick rotation

q01 = −i k0 , q02 = −i l0 , p0 = −i p0E (2)

in order to go to the Euclidean region, where the integral becomes

I(p2) =
∫

ddk

(2π)d

∫
ddl

(2π)d
1

k2 (k − pE)2 (k − l)2 l2 (l − pE)2
= IE(p

2
E) . (3)

Here, the vectors k, l, pE are Euclidean, i.e. k2 = k2
0 + k⃗2 , l2 = l20 + l⃗2 and p2E = −p2.

2. Let us now focus on the Euclidean integral IE(p
2
E). Argue why, in dimensional regularisation, we

can write ∫
ddk

(2π)d

∫
ddl

(2π)d

[
∂

∂kµ
vµ

1

k2 (k − pE)2 (k − l)2 l2 (l − pE)2

]
= 0 , (4)

for every vector vµ = kµ, lµ, pE,µ. This type of relations are referred to as Integration-By-Parts
Identities, or IBPs.
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3. (Bonus) Specialize the IBP above by choosing vµ = kµ − lµ and use it to prove that the integral
IE(p

2
E) can be “reduced” to

IE(p
2
E) =

2

d− 4

(
I1(p

2
E)− I2(p

2
E)

)
, (5)

where:

I1(p
2
E) = - u"!
# 
"!
# 

p
=

∫
ddk

(2π)d

∫
ddl

(2π)d
1

k4 (k − pE)2 l2 (l − pE)2
, (6)

I2(p
2
E) =

-
u�&%
'$p

=

∫
ddk

(2π)d

∫
ddl

(2π)d
1

k4 (k − pE)2 (k − l)2 (l − pE)2
. (7)

The black dots on the graphs indicate squared propagators, as you can see from the momentum
representation of the integrals.

4. To compute I1(p
2
E) and I2(p

2
E), start off by defining the Euclidean one-loop bubble with arbitrary

powers of the propagators

B(q2E; a, b) =
∫

ddk

(2π)d
1

(k2)a ((k − qE)2)
b
. (8)

Using Feynman parameters prove that

B(q2E; a, b) =
(4π)ϵ

16π2

Γ(2− ϵ− a) Γ(2− ϵ− b) Γ(a+ b− 2 + ϵ)

Γ(a) Γ(b) Γ(4− 2ϵ− a− b)

(
q2E

)2−ϵ−a−b
, (9)

where as usual d = 4− 2ϵ.

5. Using only Eq. (9) and defining

Sϵ =
(4π)ϵ Γ(1 + ϵ) Γ(1− ϵ)2

Γ(1− 2ϵ)
, (10)

prove that:1

I1(p
2
E) =

(
Sϵ

16π2

)2 (
− 1

ϵ2(1− 2ϵ)

)(
p2E

)−1−2ϵ
, (11)

I2(p
2
E) =

(
Sϵ

16π2

)2 (
− 1

ϵ2(1− 2ϵ)

)
Γ(1− 2ϵ)2 Γ(1 + 2ϵ)

Γ(1− ϵ) Γ(1 + ϵ)2 Γ(1− 3ϵ)

(
p2E

)−1−2ϵ
. (12)

1Make use, where necessary, of the functional identity Γ(1 + x) = xΓ(x) in order to extract explicitly all poles in 1/ϵ.
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6. (Bonus) Using the series expansion

Γ(1 + nϵ) enγ ϵ = 1 +
π2

12
n2ϵ2 − ζ3

3
n3ϵ3 +O(ϵ4) ,

where γ is the Euler-Mascheroni constant, expand all Γ functions around ϵ = 0 and prove that

Γ(1− 2ϵ)2 Γ(1 + 2ϵ)

Γ(1− ϵ) Γ(1 + ϵ)2 Γ(1− 3ϵ)
= 1− 6 ζ3 ϵ

3 +O(ϵ4) . (13)

7. Finally putting everything together show that

IE(p
2
E) =

(
Sϵ

16π2

)2

( 6 ζ3 +O(ϵ))
(
p2E

)−1−2ϵ
(14)

such that in the Minkowskian, physical, region we have

I(p2) =
(

Sϵ

16π2

)2

( 6 ζ3 +O(ϵ))
(
−p2 − i δ

)−1−2ϵ
= − 6 ζ3

(4π)4 p2
+O(ϵ) , (15)

where 0 < δ ≪ 1 comes from Feynman causal prescription.

Problem 2 - Phase-space integrals and dispersion relations

Consider the following one-loop bubble

B(s,m) =
p

m

=

∫
ddk

(2π)d
1

k2((k − p)2 −m2)
, (16)

where p2 ≡ s and the thick line represents a massive propagator with mass m.

The goal of this exercise is to exploit the connection between the imaginary part of the one-loop diagram
and the corresponding 2-body phase-space integral, through the unitarity relation established by the
optical theorem. The optical theorem states that the imaginary part of a forward diagram is the sum of
the contributions arising from all possible intermediate states going on-shell. This effectively means to
consider all the unitary cuts across the propagators. In this case, there is only one way to cut the loop
diagram, which requires s ≥ m2.

3



1. Compute, in generic d-dimensions, the 2-body phase-space integral

R(d)
2 (p1, p2; s) =

∫
ddp1

(2π)d−1
δ+(p21)

∫
ddp2

(2π)d−1
δ+(p22 −m2) (2π)dδ(d)(p− p1 − p2) , (17)

associated with the decay of a particle of momentum p into a massless and a massive particles
with momenta p1 and p2 respectively.
Show that the result is

R(d)
2 (p1, p2; s) =

42−d

π(d−3)/2Γ
(
d−1
2

) (s−m2)d−3

s(d−2)/2
, (18)

which corresponds to twice the imaginary part of the one-loop bubble in Fig.(16).

2. Taking advantage of the result in Eq.(18), argue that a d-dimensional dispersion relation for the
one-loop bubble in Fig.(16) can be written as

B(d)(s,m) =
23−2d

π(d−1)/2 Γ
(
d−1
2

) ∫ ∞

m2

dt
(t−m2)d−3

t(d−2)/2 (t− s)
∀s < m2 . (19)

Specialize it for d = 2 and d = 4, and discuss the (lack of) convergence of the corresponding
integrals. What is the physical origin of the divergence in the two cases?

3. Let us focus on the d = 4 case now. The dispersion relation can be rendered finite by performing
a subtraction. Explicitly, instead of computing B(d=4)(s,m), which is divergent, write a dispersion
relation for the difference

B(d=4)
(s,m) = B(d=4−2ϵ)(s,m)− B(d=4−2ϵ)(0,m) . (20)

Show that this dispersion relation is finite for ϵ = 0 and that ∀s < m2, it holds that

B(d=4)
(s,m) =

1

16π2

{
1 +

(m2 − s)

s
log

(
m2 − s

m2

)}
. (21)

4. Would you know how to compute B(d)(0,m) for any value of d and expand it close to d = 4− 2ϵ?
If you do so, we can recover the complete result for the bubble in d = 4− 2ϵ as

B(d=4−2ϵ)(s,m) = B(d=4)
(s,m) + B(d=4−2ϵ)(0,m)

=

(
Cϵ

16π2

)
(m2)−ϵ

[
1

ϵ
+ 2 +

(
m2

s
− 1

)
log

(
m2 − s

m2

)
+O(ϵ)

]
, (22)

where we introduced the overall normalisation Cϵ = (4π)ϵΓ(1+ ϵ) and we kept the explicit depen-
dence on ϵ since the two corresponding integrals develop poles for ϵ → 0 . What is the physical
interpretation of the subtraction at s = 0?
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5. (Bonus) By exploiting again the result of the d-dim 2-body phase space in Eq.(18), derive itera-
tively the expression of the 3-body phase space associated with the decay of a particle of momentum
p into two massless and one massive particles with momenta p1, p2 and p3, respectively.

Prove that the result is

R(d)
3 (p1, p2, p3; s) =

27−4d

πd−2

s(2−d)/2

Γ
(
d−1
2

)2 ∫ s

m2

dt
(s− t)d−3(t−m2)d−3

t(d−2)/2
, (23)

where s ≡ p2 = (p1 + p2 + p3)
2.

Solve explicitly the integral in d = 4, showing that

R(d=4)
3 (p1, p2, p3; s) =

1

256π3s

{
s2 −m4 + 2m2s log

m2

s

}
. (24)

5


