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Sheet 01: Loop integrals and dispersion relations
To be handed in to your tutors by Friday, May 2nd

Problem 1 - A two-loop massless bubble

The goal of this exercise is to get some familiarity with dimensional regularisation and with the idea of
Integration-By-Parts identities (IBPs). We will use them to calculate analytically the following two-loop
integral in dimensional regularisation (d = 4 — 2¢)
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This integral is finite for e = 0 and is given by the very simple expression
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where (3 => 7, # = 1.20206... is the Riemann zeta function. However, deriving this result by means
of direct integration is difficult. IBPs provide instead a much more elegant way.

1. Start off by performing a Wick rotation
@ =—ik’,  g=—il’,  py=—ipp (2)

in order to go to the Euclidean region, where the integral becomes
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Here, the vectors k, [, pg are Euclidean, i.c. k2 = k2 + k2, 12 =12+ (% and p% = —p?.

2. Let us now focus on the Euclidean integral Zg(p%). Argue why, in dimensional regularisation, we
can write
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for every vector v, = k,,l,,pg,. This type of relations are referred to as Integration-By-Parts
Identities, or IBPs.
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3. (Bonus) Specialize the IBP above by choosing v, = k,, — [, and use it to prove that the integral
Tr(p%) can be “reduced” to
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The black dots on the graphs indicate squared propagators, as you can see from the momentum
representation of the integrals.

where:

4. To compute Z; (p%) and Zy(p%), start off by defining the Euclidean one-loop bubble with arbitrary
powers of the propagators
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Using Feynman parameters prove that
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where as usual d = 4 — 2e.
5. Using only Eq. (9) and defining
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'Make use, where necessary, of the functional identity I'(1 + z) = 2z T'(z) in order to extract explicitly all poles in 1/e.



6. (Bonus) Using the series expansion
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where 7 is the Euler-Mascheroni constant, expand all I' functions around € = 0 and prove that
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7. Finally putting everything together show that
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such that in the Minkowskian, physical, region we have
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where 0 < 6 < 1 comes from Feynman causal prescription.

Problem 2 - Phase-space integrals and dispersion relations

Consider the following one-loop bubble
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where p? = s and the thick line represents a massive propagator with mass m.
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The goal of this exercise is to exploit the connection between the imaginary part of the one-loop diagram
and the corresponding 2-body phase-space integral, through the unitarity relation established by the
optical theorem. The optical theorem states that the imaginary part of a forward diagram is the sum of
the contributions arising from all possible intermediate states going on-shell. This effectively means to
consider all the unitary cuts across the propagators. In this case, there is only one way to cut the loop

diagram, which requires s > m?.



1. Compute, in generic d-dimensions, the 2-body phase-space integral

d d’p, d’ps

R prpsi) = [ o0 6 [ st = mt) @r 6 - p - ), (17
(2m) (2m)4-

associated with the decay of a particle of momentum p into a massless and a massive particles

with momenta p; and p, respectively.

Show that the result is
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which corresponds to twice the imaginary part of the one-loop bubble in Fig.(16).

2. Taking advantage of the result in Eq.(18), argue that a d-dimensional dispersion relation for the
one-loop bubble in Fig.(16) can be written as
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Specialize it for d = 2 and d = 4, and discuss the (lack of) convergence of the corresponding
integrals. What is the physical origin of the divergence in the two cases?

3. Let us focus on the d = 4 case now. The dispersion relation can be rendered finite by performing
a subtraction. Explicitly, instead of computing B=% (s, m), which is divergent, write a dispersion
relation for the difference
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Show that this dispersion relation is finite for € = 0 and that Vs < m?, it holds that
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4. Would you know how to compute B (0, m) for any value of d and expand it close to d = 4 — 2¢?
If you do so, we can recover the complete result for the bubble in d =4 — 2¢ as
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where we introduced the overall normalisation C, = (47)T'(1 4 ¢) and we kept the explicit depen-
dence on € since the two corresponding integrals develop poles for ¢ — 0. What is the physical
interpretation of the subtraction at s = 07




5. (Bonus) By exploiting again the result of the d-dim 2-body phase space in Eq.(18), derive itera-
tively the expression of the 3-body phase space associated with the decay of a particle of momentum
p into two massless and one massive particles with momenta p;, po and ps, respectively.

Prove that the result is
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where s = p* = (py + p2 + p3)*.
Solve explicitly the integral in d = 4, showing that
RY= (p1,p2, pai ) = ! s —m* + 2m*slog - : (24)
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