9- Hersted Integrals -GENGRAL THEORY-

GENERAL THEORY OF UTERATED WITECALS We have seen that Feynman Inty do fully l Differential Equations and from their from that the natural language to write their colution is that of ITERATED INTEGRALS In general consider a space X, with coordinates $\mathcal{F} = (\mathcal{F}_{1,\dots}, \mathcal{F}_{S})$. (piecewire smooth!) $\gamma:[0,1] \rightarrow X$ let y be a path on X · · · let W1, ..., Wn be one-forms on X with Define iterated interval $\begin{cases} \omega_1 \dots \omega_n = \int f_1(t_1) dt_1 & f_n(t_n) dt_n \\ \chi & 0 \le t_1 \le \dots \le t_{n \le 1} \end{cases}$ $\int_{Y} [empty] = 1$ by def. with

where
· fi f -> f ore complex functions
defined as the pull-backs of the wi
olong the poter J
$\chi^* \omega_i = dt_i f_i(t_i)$
y* Wi = Wi o Y composition formula
=> it just means that we are evaluating the
différential one-form on a mpérific
conducte choice doing the Curve
We coll the differential primes $\omega_n = \angle \Xi T \Xi R S$
the set of all letters wi is the ACPHABET
a could mation when when collect on WORD
h is colled the LENGTH of the charted int 2

NOTE laverse order of the	FORMS
$\int W_1 \dots W_n = \int f_1(t_1) dt_1 \dots$	fn(tn) dtn
γ $0 \leq t_1 \leq \ldots \leq t_{n+1}$	
$= \int dtn fultur) \int dture furiture (-1) = 0$	$\int_{0}^{t_{2}} dt_{2} f_{1}(t_{1}) dt_{3} dt_{4} dt_{5} dt_{6} dt_{7} d$
Simplest cose is the ordnory	LINE INTEGRAL
$\int \omega_1 = \int \chi^* \omega_1 = \int \chi$	$l_1(l_1) dt_1$
0 10,4 3 0	T standorol Notabion
· · · · · · · · · · · · · · · · · · ·	[2.2]

PROPERTIES (Ex sheet 5!)
· receted integrals dou't depend ou porometrication
of the path y
· Intepration is lineor
$\int_{X} (dw_{1} - w_{1} + \beta w_{1}' - w_{m}') = 2 \int_{X} (w_{1} - w_{n} + \beta \int w_{1}' - w_{m}$
, f y (+) = y(1-t) denotes the zerresol of pully
$\int_{V} \sqrt{f} (t) = \chi(1-t) \text{denotes the zeversal of pully}$ $\int_{V} (\omega_{1}, \omega_{2}) = (-1)^{n} \int_{V} (\omega_{1}, \omega_{2}) = (-1)^{n}$
$\int_{X^{-1}} (f = \chi(1-f) \text{ denotes the zevensol of pulli } X = (-1)^n \int_{X} (\omega_1 \dots \omega_1) = (-1)^n \int_{X} (\omega_1 \dots \omega_1) X = (-1)^n \int_{X} (-1)^n \int_$
$i \oint \gamma^{-1}(t) = \gamma(1-t) \text{ denotes the zerversol of pulling}$ $\int \omega_{1} \dots \omega_{n} = (-1)^{n} \int \omega_{n} \dots \omega_{1}$ $\int_{\gamma^{-1}}^{\gamma^{-1}} \gamma_{1} \gamma_{2} : \mathbb{I} \to \chi \text{two postlus}$ $\text{Nuclin that } \gamma_{1}(1) = \gamma_{2}(0)$
$f_{1} = f(1-t) \text{ denotes the zerversol of pills}$ $\int_{X^{-1}} \omega_{n} \dots \omega_{n} = (-1)^{n} \int \omega_{n} \dots \omega_{n}$ $\int_{X^{-1}} z^{-1} \qquad \qquad$

then we	hove the	formula	
J WA W	$h = \frac{1}{k}$	$\int_{81}^{6} \omega$	$K \int W_{K+1} \cdots W_n$
. Iterated inf	epils sa	tsfy Stuf	FLE PRODUCT
5 Wa Wa X	δ δ	$n = \int (\omega n)$	ωn) LL1 (ω1'ωm')
where 200	ursively_	· · · · · · · · · ·	
(wh wh) []	1 (w1 wm	$) = \omega_1 [(\omega_2$	$(\omega_n) \coprod [\omega_1 - \omega_m]$
	· · · · · · · · ·	+ \w_1' [(u	$\omega_{m} = \omega_{n} $ ($\omega_{2} = \omega_{m} $)
Leclly (L) LLL W1	$W_{H} = (u_{H-1}, w_{H})$	(U) = uh wh 4

for example (to be interpreted under Ssign!)
$\omega_{1}\omega_{2}$ $\Box_{2}\omega_{4}\omega_{5} = \omega_{1}(\omega_{2} \Box_{2}\omega_{4}\omega_{5})$
$+ \omega_{L} (\omega_{1} \omega_{2} \sqcup \omega_{5})$ $= u \mu f g \int (J = 1)$
$= \omega_1 \omega_2 \left(\left(\right) \sqcup \omega_4 \omega_5 \right) + \omega_1 \omega_4 \left(\omega_2 \amalg \omega_5 \right) \right)$
+ W_4W_1 (W_2 W_1W_5) + W_4W_5 (W_1W_2 $W()$)
$= \omega_1 \omega_2 \omega_4 \omega_5 + \omega_1 \omega_4 \omega_2 [() \sqcup \omega_5]$
+ $\omega_{1}\omega_{4}\omega_{5}$ (ω_{2} L) + $\omega_{1}\omega_{4}\omega_{2}$ () L) ω_{5})
$+ W_{4}W_{4}W_{5}(W_{2}U(1)) + W_{4}W_{5}W_{4}W_{2}$
$= W_1 W_2 W_3 + W_1 W_2 W_5 + W_1 W_4 W_5 W_2$
+ $W_4 W_1 W_1 W_5 + W_4 W_1 W_5 W_2 + W_4 W_5 W_1 W_2$
=> all could nations that preserve zelative order of two words !
Mixing two decks of cords, preserving relative order !

HOMOTOPY INVARIANCE

two paths $y_1, y_2: [0, 1] \rightarrow X$	X morn fold,
with the some end points $f_1(0) = f_2(0)$ $f_1(1) = g_2(0)$	0) = X0 1) = X1
ore soid to be homotopic if here	e exists a
continuous map $\phi: [0, 1] \times [0, 1] \rightarrow X$	Will
$\phi(0,t) = \chi_1(t)$, $\phi(1,t) = \chi_2(t)$	¥ o≤t≤1
$\phi(S,0) \in X_0$; $\phi(S,1) = X_1$	4 0625 1
Totte	we write
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	χ₁ ~ γ₂
	6

A function $f(y)$ is homotopy invorant if $\forall \chi_1 \sim \chi_2$ $f(\chi_1) = f(\chi_2)$
thated integrals in general are NOT haustopy invoicent their value depends, instead, on the path chosen 1
EXAMPLE 1 $M = R^2$, and define $\chi_{7,5}: [0,1] \longrightarrow \chi$ the
foundy of paths $\gamma_{2,s}(t) = (t^{e}, t^{s})$ which all go from $(0, 0) \mapsto (1, 1)$ for $[7, s \ge 0]$
$W_1 = dx$ $W_2 = dg$ x, g stoudord coorductes on \mathbb{R}^2
$\int w_1 w_2 \int rt_1^{2-1} s t_2^{s-1} dt_1 dt_2$ $\int rt_1 s t_2^{s-1} dt_1 dt_2$ $\int rt_1 s t_2 dt_1 dt_2$ 7

$= 2S \int_{0}^{1} dt_2 t_2 \int_{0}^{t_2} dt_4$	$t_{1}^{y_{-1}} = S \int_{0}^{1} dt_{2} t_{2} t_{2}$
$=\frac{S}{r+S}=\int \omega_{n}\omega_{2}$	it depends on the party ! Not Honotopy INVARIANT
EXAMPLE 2	
8 1 14	wr = dlog x
$\begin{array}{c} y \\ y \\ y \\ z \\$	$\omega_2 = d\log y$ $\rightarrow \times$
$\chi_1(+) = (1 + (x_{-1})t, 1)$	$y_2(+) = (X_1 + (y_1) +)$
$\chi_{3}(+) = (1, 1+(y-1)+)$	$\chi_{L}(+) = (1 + (x - 1)t, y)$
fs1 0	८ २ २ २

use path decomposition frinkla $\int \omega_{4} \omega_{2} \int + \int \omega_{4} \int \omega_{2} + \int \int \omega_{4} \omega_{4} + \int \int \partial \omega_{4} + \int \int \int \omega_{4} + \int \int \partial \omega_{4} + \int \int$ $\int \omega_1 \omega_2$ $\int w_{1} = \int dt \ d\log \frac{(1 + (x - 1)t)}{dt}$ log (x) $\int_{\mathbb{R}^2} w_2 = \int_{-\infty}^{1} dt \ d \log(1 + (y - i)t) dt \ dt$ log(y) $\int_{\gamma^{1}} \omega_{1} \omega_{2} = \int_{\gamma^{2}} \omega_{1} \omega_{2} = 0$ log(x) log(y) which implies J who we dre $\int_{y_3y_4} \omega_1 \omega_2 = \int_{y_3} \omega_1 \omega_2 + \int_{y_3} \omega_1 \omega_2 + \int_{y_4} \omega_2 +$

$\int w_{a}w_{2} = \log \times \log 4 \int 2e_{a}e_{b} + \frac{1}{2} \int e_{a}e_{b}e_{a}ds $ depends on path ! $\int p_{3}u + w_{a}w_{2} = 0$
notice now that if I consider
$W = \omega_1 \sqcup \omega_2 = \omega_1 \omega_2 + \omega_2 \omega_1$ then
$\int_{\mathcal{F}^{12}} W = \int_{\mathcal{F}^{12}} W = \log \times \log y$
when discussing differential Eq. for Feguman
integels we cloimed that the integrability condition
on the differential equations quotontees that the
resulting functions must be homotopy invoicint
=> this means that they cannot generate only
Herated integrals, but mech. lness course nations! 10

Let's state precisely the of iterated integels -	ateriou Br homotopy muorale
leugth 1, 1 one β γ_1, γ_2	non-stopic paths
$\int_{\partial A} \omega_{A} = \int_{\partial Z} \omega_{A} \Longrightarrow$	$\int \omega_{1} = 0$ $\int \delta_{1} \delta_{2}^{-1}$
	Jujz = closed enve
if D mfore mide	that DB = g1 y2" (bourdy)
STOKES' THEOREM	$\int \omega_{1} = \int \omega_{1} = \int d\omega_{1}$ $\delta_{1} \delta_{2}^{-1} = \delta_{1} \delta_{2} \delta_$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
to this regles dur = 0, closed differential form
if the form is closed, the toroted intype of length 1 is homotopy invotout!
• Higher length $W = lineor cours of winds = Q W_1 W_2 + S W_2 W_4 + \cdots$
Homotopy Inv becomes: $[Dw = 0]$ where $D(w_{1}-w_{n}) = \sum_{i=1}^{n} w_{1} \dots dw_{i} \dots w_{n}$
$+ \sum_{n=1}^{n-1} \omega_{2} \cdots (\omega_{i} \wedge \omega_{i+2}) \cdots \omega_{n}$ 12

this is nothing but the integration and him that we already som for different al epuchions $d\vec{H} = A\vec{H}$ => dA $A \wedge A = 0$ A contains differential frems! Cy. dwi-Wn $d\vec{H} + \vec{A}\vec{H} = 0$ X= - A note that writing n hight sign l $d\widetilde{A} + \widetilde{A} \wedge \widetilde{A} = 0$ 17 Wi one closed (<u>so for dlogs</u>]) flee $D(W_{n}, W_{n}) = \sum_{i=1}^{n-1} W_{1} \dots (W_{i} \wedge W_{i+1}) \dots W_{n}$ 12

this is also the cose for stended integrals that arise
from CANONICAL DIFFERENTIAL EQUATIONS where the
integrability condition requires dB=0 => closed
SPECIAL CASE
1 dimensional problem [dm X = 1]
and all differential forms Wi are halomaphic
$\Rightarrow W = f_z dz \qquad \begin{cases} z = x + iy \\ \overline{z} = x - iy \end{cases} \text{fwo} \\ \forall \sigma i \text{ oblights} \end{cases}$
with f(z) holomonphic function
$dW = \frac{\partial f_z}{\partial z} \frac{dz}{dz} \frac{dz}{dz} + \frac{\partial f_z}{\partial \overline{z}} \frac{d\overline{z} \wedge dz}{\frac{\partial \overline{z}}{\eta}}$
so every 1 due holomorphic form is closed!

$u = g \times dx \qquad dw = 0 \qquad (\text{there are no} \\ two firms!)$
More even $W_{\overline{n}} \wedge W_{\overline{n+1}} \equiv 0 \forall x \wedge dx = 0$
10 if X is one dimensional real epoce, (or 1 dimensional complex space and all wi holomophic)
then AUTOMATICALLY all words one integrable and all iterated integrals are homotopy involvant
=> on one - aimeis oust p 15 only one path"? 15

REGULARIZATION

How do we define iter	ited integrals if an
end-point of the path	is a singular point?
typical coor $W = \frac{d\xi}{\xi}$	logoillame four
$\int_{\mathcal{X}} \omega \to \int_{0}^{\infty} \frac{d\overline{s}}{\overline{s}} \sim$	$log(0) = -\infty$
We want to define a	regularised version, which
Philed interde	out preserves properties
of atmand improve -	
ogiele with standard	ful fils
définition when interes	. LINEARITY . SHUFFLE
CONVERGES	, PATH COMPOSITION
=> procedure colled SHUFFLE	REGULARIZATION
(or TANGENTIAL	BASE-POINT REG.) 16

· Assume that all divergences are logarithmic (it can be generalised, but physically well motivated) · Amme spore X is one-dimensional => if it is not split y into piecewise constart paths and do the some for each independent "pieco" i de both 1-dinersonal => We ASSUME therefre $\gamma: [0, 1] \rightarrow [0, \times]$ Wi = Qi dlog § +.... R Logorthme dvergence at origin §=017 Anime No other Singularity!

Consider $\int w_1 \dots w_n =$	$\int_{0}^{X} \omega_{n} - \omega_{n}$
defne regulorized	version as follows
$1 - introduce con \int_{y} \omega_{1} \cdots \omega_{n}$	$ \begin{array}{l} \mathcal{A} = \int_{1}^{\infty} \mathcal{U}_{1} \dots \mathcal{U}_{n} \\ = \int_{1}^{\infty} \mathcal{U}_{1} \dots \mathcal{U}_{n} \\ \mathcal{E} \\ = \\ \text{olways convergent } \int_{1}^{\infty} \mathcal{E}_{\pm 0} \end{array} $
$2 - 10 \text{limit} \text{E}$ $\int_{x \to 0}^{x} \omega_{1} \dots \omega_{n}$ $\sum_{x \to 0}^{n} \varepsilon_{n}$	$ = \sum_{k=0}^{n} I_{k}(x) \log^{k}(\varepsilon) + O(\varepsilon) $
3- DEFINE	$\int_{0}^{0} \frac{1}{\omega_{n}} \frac{1}{\omega_{n}} = \frac{1}{1} \frac{1}{\omega_{n}} \frac{1}{\omega_{n}}$ $\int_{0}^{0} \frac{1}{\omega_{n}} \frac{1}{\omega_{n}} \frac{1}{\omega_{n}} \frac{1}{\omega_{n}}$

of course of integral is convergent, definition
does not change
$\int_{0}^{\infty} \frac{\omega_{n}}{\omega_{n}} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{\infty} \frac{\omega_{n}}{\varepsilon} = I_{o}(x)$
1 HPORTANT
Since for E = 0 integral is convergent, all properties
of iterated integrals opply in the source way!
After manipulations, projection onto Io(x) is
consistent with multiplication => regulorsation
and multiplication <u>Connute</u> .
EXAMPLE
$\int_{-\infty}^{\infty} \frac{ds}{s} = \log(x) - \log(s) \stackrel{\text{(x)}}{=} \log(x)$
o hote $log(x) = \int_{1}^{x} \frac{dx}{3} dx$ that go have $p = 1$

of course negulorsed version depends on
"scheme choice" I could use
$\int_{v}^{x} \frac{d\xi}{3} = \log(x) - \log(v) - \log(\xi)$ ve $- \log(x) - \log(v)$
It is customory to choose v=1 for simplicity.
[MPORTA NT CASE
if there is only 1 one-form that diverges at $\xi = 0$
we can use use shaffle product to "ushin ffle"
oll this one form and regularization of iterated
interpols is reduced to regularizing length 1
intepal!
· · · · · · · · · · · · · · · · · · ·
20

for example $\omega_1 = d\log \xi$ $W_{z} = dlog(1-\xi)$ $\int \frac{dt}{1-t} \int \frac{du}{u}$ WAW2 divergent use shaffle to wate $= \int_{\omega_1}^{\infty} \omega_2 \int_{\omega_2}^{\infty} \omega_2$ Wz W1 now finite log(x1-log(E) $\begin{bmatrix} x \\ \frac{dt}{t} \end{bmatrix}^{t} \frac{du}{1-u}$ log(x) log(1-x) $= \int_{0}^{k} dt \frac{\log(a-t)}{t} =$ $L_{12}(x)$ = log x log (1-x) + Liz (x) regulated version SEE NEXT (ECTURE FOR DISCUSSION OF POLYLOGS

LINEAR INDEPENDENCE of nterated integrals One of the most supportant properties of stenated integrals in the context of FEWNHAN INTEGRALS is that, under the right emumptions, they are linesily independent if we express snoly had cerult for a cottering Acceptinde in terms of interated integrals, their independence ensures that there are no hidden tenos go back to system of DEOs $d\bar{m} = \epsilon B(x) \bar{m}$ L differential froms wi $B = \sum_{i=1}^{n} B_i \omega_i$ In general, iterated into fun. ... Wh will NOT be independent : 12

- Every relation ormony Wi iterated integrals	induces relations onlong
$-if w_i = df$, then	Jui -> f quing new 8 relations
Define Wi to be lin where E is an alge	erly DEPENDENT over Z ora of functions
f = J = function f u $\sum d_i W_i =$	$d \neq d \neq$
	this is shows possible locally l
>> we wont to restruc simple, fr example for be zational functions	t E to be something dlog - frims E will or olgebroit functions 23

in mext lecture) Examples (more $W_2 = dlog(\frac{1}{\times})$ $\omega_1 = d\log(x)$ $W_1 + W_2$ cleon ly f = Constent T $\omega_{A} = d\log\left(\frac{\sqrt{x} + \sqrt{x-4}}{\sqrt{x} - \sqrt{x-4}}\right)$ $W_2 = dlog\left(\frac{2+\chi+\sqrt{\chi}\sqrt{\chi+4}}{\chi}\right)$ $\omega_3 = dlog(x)$ $\omega_1 - \omega_2 - \omega_3 = 0$ opoin fe constant 24

the ster one line	soly indepi only 1	pols or sing endent over the one-forms	from din= EBM C (os functions) Wi ore linesly
		\sim	
Independe	ut ovu (
\Rightarrow	We Oze	not proving	His 14 general
	but we	will see	exceepter of
	this in	next lecture	when we
	Specialze	dourson to	, the most important
	don 1	sterated interve	=> HULTI PLE POLYLOGARITER
	· · · · · · · · · ·	· · · · · · · · · · · ·	
	· · · · · · · · · · · ·		
.			
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·<	. .		
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	. .		
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	<th></th> <th></th>		
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	. .		