8- Canonical Boses

Le provious lecture use hove seen that moster integres fullful systems of differential equations with
Le the dimensional regulator possenetes D
$d\vec{N} = Alsy, D)\vec{M}$ N - vector with $N \times N$ matrix matrix
le <u>EX 3</u> derived this for triangle foundy
$\frac{d^{2} (k)}{d^{2} (k)} = \int \frac{d^{2} k}{T^{0/2}} \frac{1}{(k^{2} - m^{2}) ((k - p_{1})^{2} - m^{2})} ((k - p_{1})^{2} - m^{2})}$
Here mosters { $I(1,0,0)$, $I(1,9,1)$, $I(1,1,1)$ } = M ₁ 7

<u>Crucial Point</u>
No-one faces us to choose those master intervals!
Mj are a bosis, as long as we choose the
"right number" of MIS, we are free to mop
one for the other, for example using IBP for
the tadpole
$I(n+1, 0, 0) = -\frac{(D-2n)}{2nm^2} P(n, 0, 0)$ l could decide to use $I(2, 0, 0) = -\frac{D-2}{2} I(1, 9, 1)$
ous master integral, instead of I(1,0,0). It tains out that drong my basis oppropriately, form
of differential equations can be simplified substantially!

d M = A M chouge bosis or
$\vec{m} = \vec{J} \vec{R}$ 1 NXN matrix (not necessarily rational ()
$d\overline{m} = d\overline{J}\overline{N} + Jd\overline{N} = d\overline{J}\overline{J}\overline{m} + JA\overline{J}\overline{m}$
new bosis satisfis
$d\vec{m} = \begin{bmatrix} JA J^{-1} + dJ J^{-1} \end{bmatrix} \vec{m}$ B(S ₁), D)
heppose we can find a math x J (sj, D) such that
$B(hj, D) = \begin{pmatrix} 4-D \\ 2 \end{pmatrix} \widetilde{B}(s_{ij})$ $matrix independent of D' \overset{"}{\underline{\varepsilon}} 3$

then differential Equations take the neggestive from $d\vec{m} = \varepsilon B(s;)\vec{m}$ (*) E- FACTORISED DIFFERENTIAL EQS Note that finding mater J is general is os difficult of solving the system of differential Equations for DNL We'll see that, for Fegumou Integrals, the matrix J can actually be built in many coses looking of the general sed unitarity cuts of the integrals ! We'll get back to this later ____ for now let's assume that Eq. (*) has been detained why is it a powerful statement?

=> We are actually interested in computing moster integrals of concent species in E Let's expand left out right hand ride of (*)
$\vec{m}_{j} = \sum_{k=-n_{min}}^{\infty} \varepsilon^{k} \vec{m}_{j}^{(k)}$ L'rescale moster intepols such Hist $\underline{h_{min}} = 0$
No we get, at every order we E:
$d\vec{m}_{j}^{(n)} = B(\delta_{ij}) \vec{m}_{j}^{(n-1)}$ and explicitly in a given
$\frac{\partial \vec{m}_{0}^{(n)}}{\partial x} = B_{x}(x) \vec{m}_{1}^{(n-1)}(x)$
chained hystern, order N-1 feeds in into order n 5

of every order solution is $= \int dt B_{x}(t) \overline{M}_{j}^{(n-1)}(t) + \overline{M}_{j}^{(n-1)}(x)$ m (n) (x) tenated integral over the some "keinels" determined by mathcas $B_{x}(t)$ $\int_{a}^{x} dt B_{x}(t) \int_{a}^{t} du B_{x}(u) \int_{a}^{a} dv B_{x}(v) m_{1}^{(n-3)}(v)$ tiel iteration ends at $M_{j}^{(0)}(x)$ Differential Equations naturally expose structure of Feynmon Internols as iterated Internols oren fruid kennels given by morties Br

EXAMPLE (1 60	p buildole in	D=2-2	e)
Courder agoin I X = Eulor Gour	$\frac{(a,b)}{(a,b)} = \frac{\varepsilon}{\varepsilon}$	$\frac{d^{0}k}{Ti^{0/2}} \frac{1}{(k^{2}+m^{2})}$	a ((4-p) ² +m ²) ^b
we have seen the	.t flore ore	two moster	(mtepola
$\begin{bmatrix} H_{n} = I(1, 0) = \\ H_{2} = I(1, 1) = \end{bmatrix}$	√	⇒ H = (-	$\mathbb{P}(1,0)$ $\mathbb{P}(1,1)$
Differential E	fs in b_5	where	12viol
$d(M_1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0] (H4)
$\operatorname{dp^{2}}(M_{2}) \left[-\frac{G}{p} \right]$)-2) ²(p²+6m²)	$\frac{1}{2}\left(\frac{D-3}{p^2+\omega m^2}\right)$	$\frac{1}{p^2}$
M_{1} - $T(1, 0) =$	4 17 [3-==	$\frac{(m^2)\frac{D-2}{2}}{(D-2)(D-2)}$	e ⁽²⁻²⁾ γ e ⁽²⁻²⁾ γ (4) 7

Expanding in (D-2)
$H_{1} = \frac{2}{2} + \frac{2}{2} \left(\frac{\pi^{2}}{12} \right) - \left(\frac{2}{2} \right) \left(\frac{3}{3} \right) + O(0-2)$
Let us perform the following change of bons
$\begin{pmatrix} m_1 \end{pmatrix}_{-} 2-D \begin{pmatrix} 1 & O \end{pmatrix} \begin{pmatrix} n_1 \end{pmatrix}_{-}$
$\left(M_{2}\right)^{2} = \frac{2}{2} \left(0 \sqrt{p^{2}(p^{2}+um^{2})}\right) \left(M_{2}\right)$
2005,505 polos so that both integels become finite in DN2
lu previous notation
$\overline{m} = \overline{J} \overline{M}$ then
$\frac{d\overline{m}}{dp^2} = \widetilde{B} \widetilde{m} \qquad \widetilde{B} = JAJ^{-1} + \frac{dJ}{dp^2} J^{-1} \Longrightarrow$

We find from drect alculation $\frac{1}{p^{2}+4m^{2}}$ $\frac{d\bar{m}}{dp^2} = \left(\frac{2-D}{2}\right) \begin{bmatrix} 0\\ \frac{2}{\sqrt{p^2(p^2+\omega m^2)}} \end{bmatrix}$ $z = \frac{z-1}{2}$ $\mathcal{E} \mathcal{B}(p^2, m^2) \overrightarrow{m}$ We orcheved wouted factoristion [PRICE TO] => we have now Algobiaic functions ce B! PAY] not onymore just a zational function! these equations have another nice feature the entries of the matrix B are derivatives of Logorithms!

$\frac{2}{\sqrt{p^{2}(p^{2}+\omega u^{2})}} \Rightarrow \frac{d}{dp^{2}} \left[2 \log \left(\frac{\sqrt{p^{2}+\omega m^{2}}}{\sqrt{p^{2}+\omega m^{2}}} \right) \right] \left[\frac{p^{2}+\omega m^{2}}{\sqrt{p^{2}+\omega m^{2}}} \right]$	$+ \sqrt{p^2}$ $- \sqrt{p^2}$
$\frac{1}{p^{2}+\mu m^{2}} \implies \frac{d}{dp^{2}} \left[lu \left(p^{2}+\mu u^{2} \right) \right] \frac{1}{f^{2}(p^{2}, u^{2})}$	· ·
14 differential from equations Lecome	L
$d\vec{m} = \varepsilon \begin{bmatrix} 0 & 0 \\ \omega_1 & \omega_2 \end{bmatrix} \vec{m}$	
$\omega_{1} = d\log\left(f_{1}(p^{2},m^{2})\right)$ Hose $\omega_{2} = d\log\left(f_{2}(p^{2},m^{2})\right)$ (alled) $\omega_{2} = d\log\left(f_{2}(p^{2},m^{2})\right)$	ore d-lag fizurs
	10

(cruelt is very nice => we expect sattering oupli tudes to have LOGARITHMIC SINGULARITIES from consolity + Cocolity + Oritorly ! here " special " Frequences Integrals fulfil DERs which make MANIFEST that they can only hove Logorithmic d'angulorshier => they have property to make them good BUILDING BLOCKS for physical Scotting Augehdor they deserve a nome of their own CANONICAL MASTER INTEGRALS (notice in D = Le) the basis would be different! M => CANDNICAL BASIS IV D~2

TO SUMMARISE Din SHIFT!
if we can find a change of bons J
puch that differential Eqs because $(10 D = H - 2\varepsilon)$
$d\overline{m} = \mathcal{E} \mathcal{B}(S_{ij}, m^{2}) \widetilde{m}$
with B in d-log form
then the bons m is colled CANONICAL
J. Henn 13
57X1V 1304 1806
NOTE THAT WE know that there exist examples when much books connect be found! Differential forms in matrix B could go beyond lagoithms! ACTIVE RESEARCH TOPIC

FAMAL PROPERTIES OF CANONICAL INTEGRALS
let 5 gs back to our comonical bons
$d\vec{m} = \mathcal{E} B(x) \vec{M}$
where X is only of the Sij or m ² (mones)
Ansume else that we do know boundary $\tilde{m}(x_0, \varepsilon) = \tilde{m}_0(\varepsilon)$
flution can be obtained formally as
$\overline{m}(x,\varepsilon) = \operatorname{Pexp}\left[\varepsilon\int_{Y} B(x')\right]\overline{m}_{o}(\varepsilon)$
Y is a path from xo to X
$W(\chi_{1} \varepsilon) = \operatorname{Pexp}\left[\varepsilon \int_{\mathcal{X}} B(x')\right]$ PATH DRDERED EXPONENTIAL

fine equations one in conduced form, W(r, 2) can be obtained very conly as expansion in 2 For example of $B_1 w_1 + B_2 w_2$ B(x) = Constant matrices (numbers () $W(q_{\epsilon}) = 1 + \epsilon \left(B_{1} \int_{\chi} \omega_{1} + B_{2} \int_{\chi} \omega_{2} \right)$ + $\varepsilon^2 \left[B_1 B_1 \int_X \omega_1 \omega_1 + B_1 B_2 \int_X \omega_2 \omega_1 + \int_X \omega_2 \omega_1 \right]$ + B2B1 Jun W2 iterated integrols see next lecture !! + 0(83)14

of bonic is CANONICAL the sterated integels In porheabor of fix ->> then we expect $\int_{\chi} \omega_{k...} \omega_{n} \sim \sum_{k=0}^{n} c_{k} \cdot \ell_{n}^{k}(f(x))$ Gnotout numbers . Repult will be lineon combination of the Hersterd integrals Jwn...wj with NUMERICAL COEFFICIENTS [no rational, algebraic, etc. function] Fonctions will this Lehoniour one collect PURE FUNCTIONS => Stronger Constrommy than "just ong" iterated integrolos!

INTEGRABILITY CONDITION for standard bords was $dA - A \wedge A = 0$ now becomes $(d^2m = 0!)$ $z dB(x) - \varepsilon^2 B(x) \Lambda B(x) = 0$ J d B = 0 => matrix of closed from ! -> BAB=0 fast condition devices for d-logs, more allogathems oze by construction closed FORMS

Important both for standard (1) and **→** Consider from INTEGRABILITY CONDITION quorontees that path ordered exponential does not depend on choice of path of AS LONG AS y, y' corn be continuously defined in each other l × v différence is a closed poth if FORMS EXACT difference must to a con 240 ... more on this in the next lecture_

HOW TO FIND CANONICAL BASIS ? Look of stoudard Eq. for Bubble $\begin{array}{c}
0\\
\underline{1}\left(\underline{D-3}\\
\underline{p^{2}+\mu m^{2}}\\
p^{2}\end{array}\right) \begin{pmatrix} H_{4} \\ H_{2} \\ H_{2} \end{pmatrix}$ $\frac{d}{dp^{2}} \begin{pmatrix} M_{1} \\ M_{2} \end{pmatrix} = \begin{bmatrix} 0 \\ \frac{(D-2)}{p^{2}(p^{2}+\omega m^{2})} \end{bmatrix}$ I not in E- factorised from in limit D=2We get $\begin{array}{c} 0 \\ -\frac{1}{2} \left(\frac{1}{p^2} + \frac{1}{p^2 + 4m^2} \right) \\ \end{array} \right) \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$ $\frac{d}{dp^2} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ I "offending" term Hz has non trige homogenes solution $\frac{d}{dy^2}H_2^H = -\frac{1}{2}\left(\frac{1}{p^2} + \frac{1}{p^2+um^2}\right)H_2^H$ $M_2^{H}(0=2) = \frac{C}{\sqrt{p^2(p^2 + GM^2)}}$

up to overall prefactor $\frac{2-D}{Z}$, new bords defined
exactly with factor that makes it homogeneous
equation trivial
$M_2 = \sqrt{p^2(p^2 + u m^2)} H_2 \Rightarrow M_2^{+}(D=2) = C$
just a
in fact ats equation is constaint
$11 \qquad (addid) \qquad 14 \qquad D \subset 2$
$d m_2 = \left(\frac{2 \cdot 0}{2}\right) \xrightarrow{1}_{p^2 \neq G m^2} m_1^{T} \qquad \text{comed} 1 = 2 = 2$
dp ²
$d M_2^{\#} = 0 \implies M_2^{\#} = \zeta$
dp^2
· · · · · · · · · · · · · · · · · · ·
FIRST CLUE: J is build from homogeneous
plutions in $D=2$ (or $D=4, 2n$ etc)
dependingy what we one
1 mterested 1m 19

How to Find Homogeneous Solutions ?
Generalised Unitarity cits sabofy nonlor differential
Equations as the UNCUT intepols!
=> MAXIMAL CUT satisfies homogeneous Equation
see [1610.08397] 1704.05465]
$\frac{d}{dp^2} \longrightarrow = C_1(p^2, m^2, b) \longrightarrow C_2(p^2, m^2, b)$
no support on the cut l
In fact $\sqrt{\int} \propto \frac{1}{\sqrt{p^2(p^2+\mu m^2)}}$ in $D = 2$
eogy to pure with BAIKON KEPR. [1701.07356]
\mathcal{V}

MAX CUT is only first port of the story -
Coustrical differential Equations mean that Interals
con le uniter os nersted integrals over dlogs
=> We cou "quers" of this is going to be the
cose, just looking out the INTEGRAND, le willout
even der ving d'éférentiel equations!
$- \bigcirc = \int \frac{d^{2}k}{(2\pi)^{2}} \frac{1}{(k^{2}+m^{2})((n-p)^{2}+m^{2})}$
Close to $D=2$ $K=dp_1+\beta p_2$ $\beta=p_1+\beta z$
$k^2 = 2 d\beta \beta r \beta z = d\beta \beta^2$ $k^2 = 2 d\beta \beta r \beta z = d\beta \beta^2$
$(k-p)^{2} = (a-1)(\beta-1)p^{2}$
$d_1^2 K = \frac{p^2}{2} d_d d_\beta \implies prove at !$

Internal Lecomes (m D=2!)
$\frac{p^{2}}{2} \int ddg \frac{1}{(p^{2} d\beta + m^{2})(p^{2}(d-1)(p-1) + m^{2})} =$
$= \frac{1}{2p^{2}} \left(\frac{\partial \partial \partial d\beta}{\partial \beta} - \frac{1}{(\partial \beta + \frac{m^{2}}{p^{2}})} \left((\partial - i)(\beta - i) + \frac{m^{2}}{p^{2}} \right) \right)$ don't core shout cove
$= \frac{1}{zp^{2}} \int d\beta \int dd \left[\frac{\beta}{(d\beta + \frac{m^{2}}{p^{2}})} - \frac{(\beta - 1)}{(d - 1)(\beta - 1) + \frac{m^{2}}{p^{2}}} \right] \frac{1}{p^{2} + \beta(n - \beta)}$
$= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{dd} - \int \frac{d\log[d\beta + (1-\beta) + \frac{m^{2}}{p^{2}}]}{dd} - \frac{d}{d\beta} \right]$ $= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{dd} - \int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \frac{d}{d\beta} \right]$ $= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \frac{d}{d\beta} \right]$ $= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \frac{d}{d\beta} \right]$ $= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \frac{d}{d\beta} - \frac{d}{d\beta} \right]$ $= \frac{1}{z \rho^{2}} \int \frac{d\beta}{\beta(1-\beta) + \frac{m^{2}}{p^{2}}} \left[\int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \int \frac{d\log[d\beta + \frac{m^{2}}{p^{2}}]}{d\beta} - \frac{d}{d\beta} - \frac{d}{d$

Indeed $\int \left(\begin{array}{c} d \beta \\ \beta - \left(\frac{1}{2} + \sqrt{1 + \frac{4}{p_1}} \right) \right) \left(\beta - \left(\frac{1}{2} - \frac{\sqrt{1}}{2} \right) \right)$ $\int \frac{d\beta}{\frac{\mu^2}{p^2} + \beta(n-\beta)}$ $= t \frac{1}{\sqrt{1+\frac{\mu m^2}{p^2}}} \left\{ \int \frac{d\beta}{\beta - \left(\frac{1}{2} + \sqrt{1+\frac{\mu m^2}{2}}\right)} - \int \frac{d\beta}{\beta - \left(\frac{1}{2} - \frac{\sqrt{1+\frac{\mu m^2}{2}}}{2}\right)} \right\}$ $= \frac{\sqrt{p^{2}}}{\sqrt{p^{2} + \mu m^{2}}} \left\{ \int d\log \left(\beta - \left(\frac{1}{2} + \frac{\sqrt{p}}{2}\right)\right) d\beta - \int d\log \left(\beta - \left(\frac{1}{2} + \frac{\sqrt{p}}{2}\right)\right) d\beta \right\}$ to we discovered that in D = 2 $\int exorting what we expect$ $<math>\int exorting point convolution$ $<math>\int d\log \int d\log f + \int$ $\frac{1}{\sqrt{p^2(p^2+\mu m^2)}} = \exp(-\frac{1}{p^2(p^2+\mu m^2)}) = \exp(-\frac{1}{p^2(p^2+\mu m^$

In general, the maximal cut might be more complicated than just a zational or algebraic function => STILL, CONJECTURALLY, it is olways possible to construct matax I to get différential equations in 2-factorised from the matur will in general NOT be in d-log from but it will contain trouscendal functions that originate from MAXIMAL CUT the cose of d-log forms plays a portalisty Important role in Feguman Integral colculation Extending this to more general cose is anneut E(liptic lntepol oftinc() $<math display="block">= \sum_{u} \frac{1}{\sqrt{P(p^2/m^1)}} K(Q(p^2/m^1))$ research topic