
6-Differential Egs Method

Until now we have spent	soure time
discussing how to Decompose	
Auglitudes in terms of "ma	obten integrals"
We left the issue of the cation	sl port open
for now, there are two rolution	
Unitonty u	INTEGRATION
	BY PARTS
higher dimensions or with messes	IDENTITIES 1873
[BPs were shortly discussed a	previous course.
We will ze-discuss them here	oud go
for then, showing how they con	
derive DIFFERENTIAL EQUATIONS	
	· · · · · · · · · · · · · · · · · · ·

most Siw	en integral ypl. fly +	ls, whi Leir or	dr cou nolytic e	be use	ed to	Substantially Calculation
(REC	AP ON) INT	EGRATI	N BY	PART	T <u>S</u>
" type perf the	one id e^{ii} , our sum 2 mathema mathema ant $= \frac{1}{2}$ view	d oze Zeduction Tricol (the m	post ger Moster	und u integral	voy to
the	idea is	GAUS	<u>117</u> 28	EOREM	u d	-dimensions
Lef	s que					state,)
		· · · · ·	· · · · · ·			

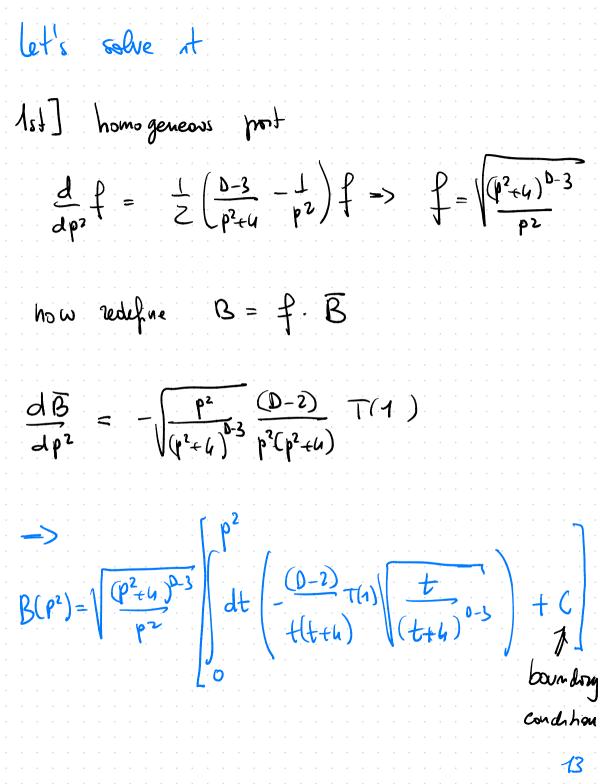
$\int \frac{L}{\pi^2} \frac{d^3k_e}{\pi^{0/2}}$	$\frac{1}{2} \frac{1}{2} \frac{1}$
becouse storting @ con be written as p At 1 Loop the IBPS	200ps, not all scalor products repagatons! Di are enough! ong rector 1 gm]
$\int \frac{L}{\Pi} \frac{d^{2}ke}{\Pi^{0}k} \frac{\partial}{\partial l}$	$\mathbb{R}^{M} \begin{bmatrix} \mathbb{I} & \mathbb{S}^{\Theta_{1}} & \mathbb{S}^{\Theta_{0}} \\ \mathbb{J}^{M} & \frac{\mathbb{S}^{\Theta_{1}}}{\mathbb{D}^{b_{1}}} & \mathbb{D}^{b_{1}} \\ \mathbb{I} & \mathbb{D}^{b_{1}} & \mathbb{D}^{b_{1}} \\ \mathbb{I} & \mathbb{I} & \mathbb{I} \\ \mathbb{I}$

Example $\bigcirc = \left\{ \frac{d^{2}k}{T^{2}n} \frac{1}{\left(k^{2}+m^{2}\right)^{n}} = \underline{T}(n) \right\}$ A loop tod pole luctideon knowstis no difference! there is only 1 1BP $\left(\begin{array}{ccc} \mathbf{d}^{n}\mathbf{k} & \underline{\partial} \\ \overline{\mathbf{T}}^{\mathbf{D}/2} & \partial \mathbf{k}^{\mathbf{M}} \end{array} \right) \left(\mathbf{k}^{\mathbf{M}} & \underline{\mathbf{J}} \\ \mathbf{k}^{\mathbf{M}} & \underline{\mathbf{M}} \end{array} \right)^{\mathbf{M}} =$ $\int \frac{D}{k^2 + m^2} - \int \frac{n \cdot k^M \cdot 2k\mu}{(k^2 + m^2)^{n+1}}$ $\frac{D-2n}{(k^{2}+m^{2})^{n}} + 2nm^{2}\left(\frac{1}{(k^{2}+m^{2})^{n+1}}\right)$

$T(n+1) = - \frac{(D-2n)}{2nm^2} T(n)$
IBP allows to reduce any tod pole integral, to 1 master integral $I(1) = D$
Similarly -O-, -(II etc
BUT this procedure works in general "D" To it DOES NOT see that I > Boxer -etc
In this sease, this proceedure is "less physical"
It does not capture simplifications which happen D = 4, do o it mixes in general IR/UV
properties in a non-trivial (and non-transportent) Way-

For example	monleu props l
$\frac{1}{9} \int \frac{P_1}{P_2} = \int \frac{d^2 k}{\pi^2}$	2 (k ²)((h-p-)) (h-p-p2) ²
$= \mathbb{I}(a, b, c)$	$p_1^2 = p_2^2 = 0$ $q^2 = 5$
with IBPs one fr	
$I(1, 1, 1) = \frac{2}{D-1}$	$\frac{1}{4} \left[\mathbb{I}(1,0,2) \right]$
$-\frac{2}{D-1}$	Le Dot'
IR Fingulor	UV ringulor (this with
	nixes two poles ! Integrand Keduction!

DIFFERENTIAL EQUATIONS Our of the most interesting coursequences of LBPs is that we can use them to derive differential equations for moster meterols Let's consider 1 logp monre bubble $\frac{1}{k} = \int \frac{d^{2}k}{\pi^{2}/2} \frac{1}{(k^{2}+m^{2})^{n_{1}} ((k-p)^{2}+m^{2})^{n_{2}}} = \int (p^{2})^{n_{2}}$ Encliden Knematics, p²= - S ; S -> S+iE IBP reduction shows that every integral con Le written os liners construction of D = 2 MIS


Tadpole alculation is stronglot forward $= \frac{Q(D)}{\pi^{0/2}} \left(\frac{M^2}{T} \right)^{\frac{D-2}{2}} \int_{0}^{\infty} \frac{k^{D-1}}{1+k^2} dk \frac{k^{D-1}}{1+k^2}$ $T(1) = \int \frac{d^{0}k}{T^{0}/2} \frac{1}{k^{2}+m^{2}}$ 4 $(1(3-\frac{9}{2})\frac{(m^2)\frac{9-2}{2}}{(0-2)(0-4)}$ let's consider barbsle $B(p^{2},m^{2}) = \begin{cases} \frac{d^{2}k}{\pi^{0}i^{2}} & \frac{1}{(k^{2}+m^{2})} \\ \frac{d^{2}k}{(k^{2}+m^{2})} & \frac{1}{(k^{2}+m^{2})} \end{cases}$ $= (m^2)^{\frac{p-4}{2}} B(\frac{p^2}{m^2})$ dimensional analysis We can put m2=1 for simplicity, reconstruct it at the end _ => B(p2) 8

na	Crucial paimt
sb J	$p^{2} \implies p^{2} = p^{\mu}p_{\mu} \rightarrow \frac{\partial p^{2}}{\partial p_{\mu}} = 2p^{\mu} S.$
	$\frac{\partial}{\partial p_{1}} = \frac{\partial p_{2}}{\partial p_{2}} \frac{\partial}{\partial p_{2}} = 2p_{1} \frac{\partial}{\partial p_{2}}$
	$p_{\rm M} \frac{3}{2} = 2p^2 \frac{3p_{\rm L}}{2}$
· · · · · · ·	$\frac{\partial}{\partial p^2} = \frac{1}{2p^2} \left[p^{\mu} \frac{\partial}{\partial p^{\mu}} \right]$
· · · · · ·	We can write dervahrer wrt mondelistan
· · · · · ·	currents es derivatives wit momental pr
· · · · ·	9

this means I have an easy way to comput derivative of bubble out integrand level	e
$\frac{\partial}{\partial p^2} B(p^2) = \frac{1}{2p^2} P_m \frac{\partial}{\partial p_m} \int \frac{d^2 k}{\pi^{0/2}} \frac{1}{(k^2 + m^2)} ((h - \frac{1}{2p^2}) \frac{d^2 k}{(k^2 + m^2)} \frac{1}{(k^2 + m^2)} \frac{1}{(k^2 + m^2)} \frac{d^2 k}{(k^2 + m^2)} \frac{1}{(k^2 + m^2)} \frac{1}{(k^$	p) ² tur)
$\begin{array}{ccc} 2 & 1 \\ & & \\ &$	2
2 1 $2(k-p)^{k}$ ∂P_{μ} D_{2} D_{2}^{2}	 . .<
$P_{\mu} \frac{\partial}{\partial p_{\mu}} \frac{1}{D_{2}} = \frac{1}{D_{2}^{2}} \left(2k \cdot p \cdot 2\mu^{2} \right) =$
$= \frac{1}{D_{z}^{2}} \left(D_{1} - D_{2} - \beta^{2} \right)$	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
	10

$\sum_{\substack{i=1\\i\neq 2}} \int \frac{d^{2}k}{\pi^{0/2}} \frac{1}{D_{1}D_{2}} = \frac{1}{2p^{2}} \int \frac{d^{2}k}{\pi^{0/2}} \left(\frac{1}{D_{2}^{2}} - \frac{1}{D_{1}D_{2}} - \frac{p^{2}}{D_{1}D_{2}^{2}} \right)$
=> $\frac{2}{3p^{2}} \frac{\Gamma(1, 1)}{B(p^{2})} = \frac{1}{2p^{2}} \left[\frac{\Gamma(0, 2) - \Gamma(1, 1)}{\Gamma(1, 2)} \right]$ $-\frac{1}{2} \frac{\Gamma(1, 2)}{\Gamma(1, 2)}$
$[BP_{S}] = - \frac{(D-2)}{2m^{2}} \frac{T(m^{2})}{T(1,0)}$
$\overline{T(1,2)} = -\frac{(D-2)}{2m^{2}(p^{2}+4m^{2})} \overline{T(1,0)} - \frac{(D-3)}{p^{2}+4m^{2}} \overline{T(1,-1)} $ $B(p^{2})$ $B(p^{2})$ M

putting evenything together we get $(m^2 - 1)$ $\frac{d}{dp^2} \frac{B(p^2)}{p^2} = \frac{1}{2} \left(\frac{D-3}{p^2+4} - \frac{1}{p^2} \right) \frac{B(p^2)}{p^2}$ T(1)THOPOLE for $m^2 = 1$ p2(p2+6) nahomogeneous lineor d'fferential epua Ten WITH RATIONAL LOEFFICIENTS this is always the case, because IBPS generate surveys rational coefficients, nothing more complicated Lupertaut .12

$B(p^{2}) = -(D-2)T(1)\sqrt{\frac{(p^{2}+4)^{D-3}}{p^{2}}}\int_{0}^{p^{2}} \frac{t^{-1/2}}{(t+4)^{D-1}}$
- (D-2) T(1) \[P^2+4)^{D-3} C p^2 \] Inferred from Barndorg constant
here we can see innerestiately that $\underline{C=0}$! In fact, $B(p^2 \rightarrow 0)$ must be regular
$\int - => no singular behaviour except of p2 = - lim2 => S = lim2 = -$
$B(p^2) _{p^2 \to 0} \sim \frac{C}{\sqrt{p^2}} \to \infty p_0 C=0$