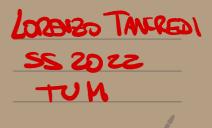
Interrou d Reduction 1/2



A comment ou latpose of type $\int \frac{d^{D}l}{(2\pi)^{D}} \frac{(l-l)^{m}}{D_{1}\cdots D_{N}} \frac{k-2m}{l!} (l-u_{j}) \leq \frac{1}{D_{1}\cdots D_{N}}$ what shout the $l = [(l+q_i)^2 - m_i^2] - 2l q_i + m_i^2 - q_i^2$ $D_{i} + M_{1}^{2} - q_{1}^{2} - 2l q_{i}$ Prome stachro I hove but lower Touk repeat this for all overlagle demonstration

INTEGRAND REDUCTION

the computation of one-loop scattering amplitudes has received a strong boost once it was realized that any one loop teuros integral con olways be reduced to a BASIS of moster interolo in D=6-22 spore-time dimensions $\overline{L}_{N} = \int \frac{d^{0}\ell}{(2\pi)^{0}} \frac{N(\ell^{\mu}, p^{\mu}, \chi^{\mu}, \epsilon^{\mu}...)}{D_{1} D_{2} ... D_{N}}$ $= \sum_{i}^{j} C_{4,i} I_{4}^{(i)} + \sum_{i}^{j} (3_{i}^{i} I_{3}^{(i)}) + \sum_{i}^{j} (2_{i}^{i} I_{2}^{(i)})$ $\sum_{i} C_{a,i} \mathcal{I}_{a}^{(i)} + \mathcal{R}_{i} + \mathcal{O}(\varepsilon)$ (1)these coefficients ou & independent 1

 $T_{N}^{(i)}$ denote SCALAR (rouk zero) N-point in D=6-2E we need of most scolor boxes integrals => the index i is necessary because in general there is more than one lox more than one triangle et c -First to prove this were PASSARWO, VELTMAN 1979 this result is, in a sense, independent and more "stringent" thou what one cou ochieve (IBPS) with Integration by ports identifies but at is also less general and applies only @ 1 loop [we will soy more don't a comparison of this] with IBPS in later post of the course]

For the integral boys we have
$\sum I_1(m_1^2) = \int \frac{d^0 \ell}{(2\pi)^0} \frac{1}{D_1}$
$\sum_{n=1}^{m_{2}} \prod_{n=1}^{m_{2}} \left(p_{1}^{2}; m_{1}^{2}; m_{1}^{2} \right) = \int \frac{d^{0} l}{(7\pi)^{0}} \frac{1}{D_{1} D_{2}}$
$ \begin{array}{cccc} P_{2} & & \\ m_{1} & m_{2} & \\ m_{2} & m_{1} & \\ m_{3} & m_{3} & \\ P_{1} & & \\ \end{array} \qquad \qquad$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$P_1 \qquad P_4 \qquad = \int \frac{d^2 \ell}{(2\pi)^2} \frac{1}{D_1 D_2 D_3 D_4}$
$D_{i} = (l + q_{i})^{2} - m_{i}^{2}$ $S_{ij} = (q_{i} + q_{j})^{2}$

All these intepols are known analytically and we will learn more dont the functions required for their colculation in the next lectures Forst thing we want to do now, is to prove our moin france (1). We will prove 2 things of higher ronk Zeduchen $\frac{d^{0}l}{(2\pi)^{0}} = \frac{l^{\mu_{\Lambda}}l^{\mu_{2}}}{D_{1}...D_{N}}$ $\Rightarrow \sum_{N' \leq N} \int \frac{d^{0}\ell}{(2\pi)^{0}} \frac{1}{D_{4}} + R$ reduction of higher point to lower point $\frac{\partial^{2}l}{\partial (2\pi)^{2}} \int \frac{1}{D_{1} - D_{N}} \rightarrow \sum_{N' \leq 4} \int \frac{1}{(2\pi)^{4}} \frac{1}{D_{1} - D_{N'}} + \frac{R}{1}$ BATTONAL PART

In order to ocheve this, we will loop momentum in terms of the r (or equivalently p_{a}^{μ} , but len ci	l expound the region momenta quin onvenient)
If spoce-time dimensions $N \ge D$ enough region momenta to span	+1, then we have
l^{M}_{-} $c_{1}q_{1}^{M}_{+}$ + $c_{2}q_{2}^{M}_{+}$ + $l_{\epsilon}^{M}_{\epsilon}$ l_{ϵ} REASON WHY PENTAGON Disappears in $D = 4$, modulo ex rational remainder l	- 200 dual port 14 DIM reg- D-28 dim
• $1 + N + D + 1$ then we doen momenta $\lambda^{\mu} = G q_1^{\mu} + \cdots + G_{N-1} q_{N-1}^{\mu} + b_1 N_1^{\mu} + \cdots + d_{N-1}$	· · · · · · · · · · · · · · · · · · ·

we would like to use these decompositions to
prove formule (1). Still, we can do a bit
better. the issue is that the git one not
orthogonal, no if we decompose
these coefficients are rother complicated to compute since
complicated to compute since
$1 \cdot 1_{j} \neq 0_{j}$
11 is then convenient to use a different books
$1 \cdot 1_{j} \neq 0_{j}$
11 is then convenient to use a different books colled <u>VAN NEERVEN - VERMASEREN</u> BASIS to see how this works, let's megine for purplicly
11 is then convenient to use a different books colled <u>VAN NEERVEN - VERMASEREN</u> BASIS to see how this works, let's megine for purplicly
11 is then convenient to use a different books colled <u>VAN NEERVEN - VERMASEREN</u> BASIS

14 this cose in 2-2E dimensions:
$\mathcal{L}^{M} = C_{1} q_{1}^{M} + C_{2} q_{2}^{M} + l_{s}^{M}$
VAN NEERVEN - VERHASEREN BASIS IS built of follow
Consider Levi-Civita teurs <u>12 D=2</u> E ^{MV}
$\mathcal{E}^{MV} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ STRICTLY IN $D = 2 $
with $\mathcal{E}^{NV}\mathcal{E}_{PF} = 5^{M}_{P} 5^{V}_{F} - 5^{M}_{F} 5^{V}_{P}$
[we keep here guv minkanski, S ^M endideou
as when we contract EMV Epo ducys one has lower
and one upper indices]
, , , , , , , , , , , , , , , , , , ,

oud build the	two vectors	· ·
$\overline{v}_{1}^{\mu} = \mathcal{E}^{\mu\nu} q_{2\nu}$	$\overline{v}_{2}^{H} = \varepsilon^{VM} q_{1V}$	otice order is diffrent
$\overline{\mathcal{U}}_{1}^{\mu} = \varepsilon^{\mu q_{2}}$	$\overline{v_z}^{M} = \varepsilon^{q_{\mu}\mu}$	Common notstion
such that		
$\overline{v_1}, \overline{v_1} \neq$		not orthonormal
· · · · · · · · · · · · · · · · · ·	BOT	· · · · · · · · · · · · · · · · · · ·
they se inde	pendent vectors a	send by construction
$\int \overline{\mathcal{V}_{4}} \cdot q_{4} = \mathcal{E}^{q_{1}q_{2}}$	$\overline{\mathcal{V}}_{h}$. $q_{z} = 0$	to the gil
$\begin{bmatrix} \overline{v}_2, q_1 = 0 \end{bmatrix}$	$\overline{\mathfrak{V}}_{\mathbf{z}}\cdot\mathfrak{q}_{\mathbf{z}} = \mathcal{E}^{\mathfrak{q}_{\mathbf{x}}\mathfrak{q}_{\mathbf{z}}}$	to the qj !
$\mathcal{E}^{q_{\Lambda}q_{2}}=\mathcal{E}^{\mu\nu}$	911 92 We'lle -2 14 0	per what this is pocand 8

let's	defne	the "non mo	lised" ve	e chones
	$\frac{\overline{\mathcal{D}}_{1}^{H}}{\mathcal{E}^{q_{n}q_{2}}}$			$\frac{\mathcal{E}^{q_{n}p_{n}}}{\mathcal{E}^{q_{n}q_{2}}}$
V1 91	- 1	Vz 92 =	1	$\mathcal{D}_{\lambda} \cdot q_{j} = 0 \lambda \neq j$
		wout to I con w		\mathcal{L}^{μ} iu $D = 2$
L ⁴ =	(g, l) v	n ⁿ + (92·l)	Uz ^M	$\begin{bmatrix} \text{strictly } 14 \\ D = 2 \end{bmatrix}$
Di fferei	ut way	to see this	is from	Schouten id
۲ ^۳ ٤ ۲	? = l'	E ^{MP} + P ^P E	Ξ ^ν μ	
				· · · · · · · · · · · · · · · · · · ·

Which is a courreguence of the fort that in D = 2 you cannot have more throw 2 independent Vectors C prove at !]
$\mathcal{E}^{\mu\nu\rho} p_{\alpha\mu} p_{2\nu} p_{3\rho} = 0 i \underline{D} = 2$ $\int_{-\infty}^{M} (l \cdot q_{1}) \nabla_{1}^{M} + (l \cdot q_{2}) \nabla_{2}^{M}$
$l = (l, q_1) v_1 + (l, q_2) v_2$. Very convenient because or we know, (q_i, l) can always be written or lineor cours of propopators of the graph!
$l q_i = D_i - D_N - q_i^2 + m_i^2 - m_N^2$ po
$l^{M} = \frac{1}{2} \sum_{i=1}^{2} \left[D_{i} - D_{i} - q_{i}^{2} + m_{i}^{2} - m_{i}^{2} \right] U_{i}^{M}$ $\frac{1}{10}$

. Shell, this de comportion is volid
STRICTLY in D=2, where we can define
E ^{MV} !
We can generalise this to $D = 2 - 2\varepsilon$ by Using
$ \mathcal{J}_{1}^{\mu} = \frac{\mathcal{E}_{q_{1}q_{2}} \mathcal{E}_{\mu}^{\mu} \mathcal{E}_{2}}{\mathcal{E}_{q_{n}q_{2}} \mathcal{E}_{q_{n}q_{2}}} \mathcal{J}_{2}^{\mu} = \frac{\mathcal{E}_{q_{n}q_{1}} \mathcal{E}_{q_{n}q_{1}}}{\mathcal{E}_{q_{n}q_{2}} \mathcal{E}_{q_{n}q_{2}}} $
oud contracting
$E^{\mu\nu}E_{l}\sigma = \delta^{\mu}_{e}\delta^{\nu}_{\sigma} - \delta^{\mu}_{\sigma}\delta^{\nu}_{p} \equiv \delta^{\mu\nu}_{p\sigma} definition$
such that
$\mathcal{E}^{q_1q_2} \mathcal{E}_{q_1q_2} = \mathcal{J}^{q_1q_2}_{q_1q_2} = \det \begin{bmatrix} q_n^2 & q_n q_1 \\ q_n q_1 & q_2^2 \end{bmatrix}$
$= \Delta_2 = q_1^2 q_2^2 - (q_1 q_2)^2 \qquad GRAM DETERMININTOF Two VECTORS11$

65 (we write	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•
V1 ⁴ =	$\frac{\delta_{q_1q_2}^{\mu q_2}}{\Delta_2}$	$\mathcal{V}_2^{\mu} = -\frac{2}{2}$		•
yol d	U D = 2	- 78		•
	T = 2	V-on Verveeu -	-Vermoseren boss	• • • • •
L [#] =	$(l q_1) \nabla_n^{\mu} +$	$(l q_2) V_2^k$	$u + l_{\varepsilon}^{n}$	•
			extre component	•
		. .	extre component 14 - 25 dimensions	
· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · ·		•

GENERAL CASE
Endier we courdened cone N=3 D=2
where spoce-time can be spanned entrely by the two region momenta.
Consider now more general cose
D = dp + dt trousverse space (all that remains!) physical dim # depends on graph = (N-1)
confidering physical cose $D = 4$ then
dp = mim (N-1,4) if N-1>4, then still only Le of the external momenta Can be independent !
13

=> Important : over if we work in dim reg, extend momente remain in D=4] Now we construct the VAN NEERUEN - VERHASEREN bon's we the dp physical dimensions sponses by q_1^{μ} , q_{dp}^{μ} or v, = $\dot{\lambda} = 1, \dots, d_{p}$ $\Delta_{d\rho}(q_{1}, q_{d\rho})$ $\Delta d_p = det(q_i, q_j)$ grou determinant of region momenta. Couplekly $S_{\nu_1}^{\mu_{n}...\mu_{dp}} = det \begin{bmatrix} S_{\nu_1}^{\mu_1} & S_{\nu_2}^{\mu_1} & S_{\nu_{dp}}^{\nu_1} \\ S_{\nu_1}^{\mu_{dp}} & S_{\nu_2}^{\mu_{dp}} & S_{\nu_{dp}}^{\mu_{dp}} \\ S_{\nu_1}^{\nu_{dp}} & S_{\nu_2}^{\nu_{dp}} & S_{\nu_{dp}}^{\nu_{dp}} \end{bmatrix}$ And sym and lower ! orthogonal to the gil $V_1 \cdot q_j = \delta_{nj}$ 16

how do we spore the transverse spore?
• EUCLIDEAN spoce, sponsed by n_j^M $j=1,,dt$
$N_i \cdot N_j = \delta_{ij}$; $\nabla_i \cdot N_j = 0$ $\neq q_i \cdot N_j = 0$
Finility dos for the (-2E) extra dimension ne
source unte
$ \int_{a}^{\mu} \frac{d\rho}{1 = 1} \left(l \cdot q_{i} \right) \sqrt{1}^{\mu} + \frac{dt}{1 = 1} \left(l \cdot n_{i} \right) n_{i}^{\mu} + \left(l \cdot n_{\varepsilon} \right) n_{\varepsilon}^{\mu} $
10, for example, for a 3-point function
$\int_{1}^{2} \int_{1}^{M} = \frac{2}{\sum_{i=1}^{2} (l \cdot q_{i}) U_{i}^{M}} + \frac{2}{\sum_{i=1}^{2} (l \cdot n_{i}) n_{i}^{M}} + (l \cdot n_{E}) n_{E}^{M}}{\int_{1}^{M} \int_{1}^{1} \frac{1}{E}} = \frac{1}{2} \int_{1}^{M} \int_{1}^{1} \frac{1}{E} \int_{1}^{1} $

		0							•										0		•	•		•					
	•				•	•		•	•					•	•	•	•		•	•	•	•		•			•		•
	•				•			•	•								•				•	•	•						•
			•		•	•		•	•					•	•	•	•		•	•	•	•		•			•		•
	•				•			•	•								•				•	•	•						•
	•				•	•		•	•	•					•		•				•	•	•	•					
	•				•	•		•	•	•				•	•		•		•		•	•	•	•			•		•
			•		•	•		•	•					•	•	•	•		•	•	•	•		•			•		•
			•			•			•						•	•				•				•			•		
										•							•				•	•							
	•				•			•	•	•			•				•	•			•	•				•			•
									•																				
			•			•			•						•	•				•				•					
	•								•																				
	•								•																				
																										•			
		-	-							-	-	-			-	-		-		-				-		-			