12 - The Lymbol Hap for MPLs & special functions beyond MPLS

Let's go	bet to	the problem	of dering
FUNCTIONAL	RELATIONS	=> we'll	do this ru
2 ways	derivative of	hyne vol	· · · · · · · · · · · · · · ·
· · · · · · · · · · ·			
· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·	
· · · · · · · · · · ·			
· · · · · · · · · · · ·		· · · · · · · · · · · · ·	
· · · · · · · · · · ·			
· · · · · · · · · · · ·		· · · · · · · · · · · · · ·	
· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·
· · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	
· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
· · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	
· · · · · · · · · ·		· · · · · · · · · · ·	

if we one interested into relations oning at higher we glut, we need to strate this	functions proceedure
A = G(0, 1, 1, X)	· · · · · · · ·
$B = -L_{12}(x) \log(1-x) - \frac{1}{2} \log x \log^{2}(1-x)$	· · · · · · · ·
$+\frac{\pi^2}{6}\log(1-x) - L_{13}(1-x) + 5_3$	· · · · · · · ·
to provo A = B	· · · · · · ·
$\frac{\partial A}{\partial x} = \frac{1}{x} G(1, 1, x) = \frac{1}{x} \frac{1}{2} \log^2(1-x)$	
$\frac{\partial B}{\partial X} = + \frac{\log(1-x)}{2X} + \frac{L_{12}(x)}{1-x} - \frac{1}{2X} \log^2(1-x) +$	log(x)logtx) I-x
$-\frac{\pi^2}{6}\frac{1}{1-x}+\frac{L_{12}(1-x)}{1-x}$	

$\frac{\partial A}{\partial x} = \frac{\log^2(1-x)}{2x}$
$\frac{\partial B}{\partial x} = \frac{\log^2(1-x)}{2x} + \frac{1}{(-x)} \left[\frac{L_{1_2}(x) + L_{1_2}(1-x) + \log x \log(1-x)}{6} - \frac{\pi^2}{6} \right]$
For A, B to be equal, this shalls be zero!
$C = Li_2(x) + Li_2(1-x) + \log x \log(1-x) - \frac{\pi^2}{6} \qquad \qquad$
10 I need to consider now
$\frac{\partial \mathcal{L}}{\partial X} = 0 \qquad \left[\begin{array}{c} \text{obvious ince we go down to logs} \\ \frac{\partial \mathcal{L}}{\partial X} \end{array} \right]$ $\left[\begin{array}{c} \text{obvious ince we go down to logs} \\ \frac{\partial \mathcal{L}_{i2}(x)}{\partial X} \end{array} \right] = - \begin{array}{c} \log(n-x) \\ \frac{\partial \mathcal{L}_{i2}(x)}{\partial X} \end{array} = \begin{array}{c} \log(n-x) \\ \frac{\partial \mathcal{L}_{i2}(x)}{\partial X} \end{array} = \begin{array}{c} \log(n-x) \\ \frac{\partial \mathcal{L}_{i2}(x)}{\partial X} \end{array} = \begin{array}{c} \log(x) \\ \frac{\partial \mathcal{L}_{i2}(x)}{\partial X} \end{array} = \begin{array}$
ous holde $C(x \rightarrow \frac{1}{2}) = 0$
$\lim_{z \to \infty} L_{12}(\frac{1}{2}) = \frac{T^2}{12} - \frac{\log^2(2)}{2} - \frac{1}{2}$

this multiple differentiation can be encoded into the symbol MAP Stort fran france for TOTAL DIFFERENTIAL of on <u>MPL</u> (proven on exercise sheet 6!) $dG(a_1,...,a_n; \times) =$ $\sum_{i=1}^{n} G\left[\theta_{1}, \frac{\hat{\theta}_{i}}{n}, \frac{\theta_{n}}{n}\right] d\log \left[\frac{\theta_{i-1} - \theta_{i}}{\theta_{i+1} - \theta_{i}}\right]$ with $d_{n \neq 0} = 1$ for $d_{n \neq 0} = 0$; \hat{q}_{n} missing index $\hat{1}$ $q_{n \neq 0} = X$; $q_{n \neq 1} = 0$; \hat{q}_{n} missing index $\hat{1}$ q(x) = 1 (without indices); dq(0,x) = dlog(x)We define SYMBOL Mojo S' iteratively of $S[G(a_{1,...,a_{n'}} \times)] = \sum_{i=1}^{n} S[G(a_{1,...,a_{i'}}, a_{n'}, x)] \otimes \left[\frac{a_{i+1} - a_{i}}{a_{i+1} - a_{i}}\right]$

$\int \left[\left(\left(\left(\left(\left(x \right) \right) \right) \right) = S \left[G \left(x \right) \right] \right) = S \left[G \left(x \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right] \left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(\left(x \right) \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(x \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(x \right) = S \left[\left(x \right) = S \left[\left(x \right) \right) = S \left[\left(\left(x \right) \right) = S \left[\left(x \right) = S \left[\left(x \right) = S \left[\left(x \right) = S \left$	· ·
$= \otimes (a - x) - \otimes a$ $= \otimes (1 - \frac{x}{a})$	
not well defined where a >0	. .
\$ [410, x]] = \$ [4(x)] & dlog x =	
	. .
	. .
	· · · · · · · · · · · · ·

the number onocistes to any MPLs of weight n a <u>n-fold</u> touror in a tensor space
$S(G(0,X)) = \otimes X$ $S(G(1,X)) = \otimes (1-X)$
$S(((-1,1,x)) = (1+x) \otimes 2 + (1-x) \otimes (1+x) = (1-x) \otimes 2$
IN TOTAL DIFFERENTIAL
HAXIMALLY ITERATED
Each factor we the Equival is "marally a dlog and therefore the symbol can be Equipe fect using standard properties of logonithms

$S[Lin(x)] = -[(1-x) \otimes x \otimes \dots \otimes x]$	•
n-1	•
Note opposte order to integration	
$L_{in}(x) = \int_{0}^{x} \frac{dx}{x} L_{in-c}(x)$	•
$L_{i_1}(x) = -\log(1-x)$	
d[Lin(x)] = Lin-i(x) dlog(x)	•
S[Lin(x)] = S[Lin-i(x)] & x	•
$= -(1-x) \otimes X \otimes \cdots \otimes X$	4

PROPERTIES OF SYNGOL CALOULUS > UNUSUAR Form of multilinesity • DESTRIBUTTIVITY
$C \otimes (q,b) \otimes D = C \otimes q \otimes D + C \otimes b \otimes D$ $C \otimes (q^{n}) \otimes D = n C \otimes q \otimes D$
· NEGLECT TORSION (Technical "choice")
$C \otimes P_n \otimes D = 0$ if P_n is n-th root of U_{nnity} $\Rightarrow log(1) = 0!$
• ZERO ARGUMENT $G(, 0) = 0 \implies S[G(, 0)] = 0$ of least 1 index $\neq 0$
· SHUFFLE PRODUCT
$S[G(a_1, a_1, x), G(b_1, b_1, y)] =$
S[Glan an, x)] LL S[Glbn bm, y)]
shuffle tensors, 20 example later 5

. Note that we would expect dlog c=0
for only constant c - miled one can extend
guisel calculus to rational museus following the deficit tion we gave
$S[log(2)] = \otimes dlog(2) = \underline{\otimes 2} \neq 0!$
$S[Li_3(\frac{1}{2})] = 28282$ etc for $Lin(\frac{1}{2})$
$\left(\omega hile S[Lin(2)] = 0, \right)$
Frue $S[Li_n(x)] = -(1-x) \otimes x \otimes \dots \otimes x$ 1 if x = 2, nost of 1 if x = 2
$S[Li_3(5)] = -2(2\otimes 5\otimes 5) e^{t_c}$
nou truis wit supply differentiating!

IMPORTANT PROBLEM
Mony trouscendental numbers are in the symbol kernel!
• 3 values $S[5n] = 0 \Rightarrow Leconse they are N Lin(1)$
$S(L(n(x))) = -(1-x) \otimes x \otimes \cdots \otimes x$ 1 $x = 1 \qquad g \text{ ves 2evo due}$ $t_0 log(1) = 0$
. Als same consuctions
$S[L_{14}(\frac{1}{2})+\frac{1}{24}log'^2]=0$ (chack if) 7

HOLTIPLE 3 volues (HZVS) Alternative Definition of MPLS $L_{M_{A}...M_{K}} \left(X_{1}...X_{K} \right) = \sum_{\substack{0 \leq n_{1} \leq n_{2} \leq ... \leq n_{K}}} \frac{n_{1}}{n_{1}^{m_{1}}} \frac{X_{k}^{n_{k}}}{n_{k}^{m_{1}}}$ = $(-1)^{k}$ $G_{m_{k...}m_{A}}$ $(\frac{1}{x_{k}})$ hote reversed order 1 hote reversed order 1 where $G_{m_1, m_K}(t_1, t_k) = G(0, 0, t_1, ..., 0, 0, t_K; 1)$ this range to $5[5mmm_n] = 0$ in Kennel]

let's go back to the problem we sow earlier
$A = G(0,1,1,X) \qquad \begin{array}{l} a_0 = X \\ a_4 = 0 \end{array}$
$B = -L_{12}(x) \log(1-x) - \frac{1}{2} \log x \log^{2}(1-x)$
$+\frac{\pi^{2}}{6}\log(1-x) - L_{i3}(1-x) + 5_{3}$
$S(A) = S(G(1,1,x)) \otimes \left(\frac{x-0}{1-0}\right)$
$+S(C(0,1,x))\otimes\left(\frac{0-1}{1-1}\right) = both draget$
$+ S(G(0, 1, x)) \otimes \left(\frac{1-1}{X-1}\right) = \int$
need a regularitation!
Divergence hoppens for aprol successive indices
9.

Use shiftle ! $G(1, 1, x) = \frac{1}{2}G(1, x)^2 \int S(G(1, x) G(1, x)) =$
$S[G(1, x)] = \otimes (1 - x) \int S[G(1, x)] \square S[G(1, x)]$ = 2(1-x) $\otimes (1 - x)$
Lat's de a "noive" cegulorization:
$S((1,1,x)) \Rightarrow S[(1,1+\epsilon,x)] =$
$= (1-x) \otimes \mathcal{E} - (1-x) \otimes (1+\mathcal{E}) - (1+\mathcal{E}) \otimes (1-x)$
$+(1+\epsilon)\otimes (1-\chi+\epsilon)\otimes (1-\chi) - (1-\chi+\epsilon)\otimes (1-\chi)$
if $\varepsilon \rightarrow 0$ $(1+\varepsilon) = (1)$ noot of unity ! [log(1)=0 $(1-x+\varepsilon) = (1-x)$
$= (1-x) \otimes \mathcal{E} + (1-x) \otimes (1-x) - (1-x) \otimes \mathcal{E} Coucel$
= $(1-x) \otimes (1-x)$ repulsed symbol
10

Fuiloly_
$\int \left[G\left[0, 1, 1; \times \right] \right] = (1 - \times) \otimes (1 - \times) \otimes \times$
$\overset{\bullet}{\overset{\bullet}{}} = \overset{\bullet}{} = \overset{\bullet}{}$
the
$B = -L_{12}(x) \log(1-x) - \frac{1}{2} \log x \log^{2}(1-x)$
$+\frac{\pi^2}{5}\log(1-x) - Li_3(1-x) + 5_3$
$S[L_{i_2}(x)] = -((-x) \otimes x$
$S[log(1-x)] = \Theta(1-x) $ $S[logxlog(1-x)]$
$S[\log(x)] = \otimes x \qquad = S[\log x \log^2(1-x)]$
$S[L_{13}(1-x)] = - \times \otimes (1-x) \otimes (1-x)$
$\sum_{i=1}^{n} \left[(1-x) \otimes (1-x) \otimes x + (1-x) \otimes x \otimes (1-x) + x \otimes (1-x) \otimes (1-x) \right]$
2 is not mode the symbol ! 10

Putting everything together one finds $S\left[-L_{i_2}(x)\log(1-x)-\frac{1}{2}\log(x)\log(1-x)\right]$ $-L_{13}(1-x)] = (1-x) \otimes (1-x) \otimes \times$ S[Glo,1,1,X)] $\int \left[\frac{\pi^2}{6} \log(n-x) \right] = 0$ For Couristency S[3n] = 0 $\int \left[5_3 \right] = 0$ We get a good port of the result, but not everything! we need to refue our to Fix lost pieces ouolignes -11

One possible colution Clonby de tams in the keinel of S and make ou ousst 2 => coefficients con be fixed by looking out special limits to find staff like T2 log(1-X) Problem you need to "queis" slos Note that I would OP partile fuct and Brins not lose this term 2 it could be very difficult in general! Uring normal differential **3**× Es for some longs dervelive is better ! => this works well with titles, self-contained and very supple alphabet 12

A more complete plubou
Use Coaction / Copeduct, which corresponds
to not taking MAXHUH LITERATION OF THE
DI'FFERENTIAL but instead differentisting
ouly "up to a point" _
the Coproduct reveals also the so-called
HOPF-ALGEBRA Structure belind Polyeogo
=> this would require onother course
C. Dun = 01 Xiv 1203.0454
S. Wernmal or Xiv 2201.03593
13

BEYOND MPLS

In constructions MPLs, we have storted noticing that 1 - Feynman integrals fielfil differential Equations and an naturally solved in terms of iterated integrals 2- Feynmon Integrals are PERIODS of revoted integrals that give 3. Saylest example Tipe to periods one iterated interpols of RATIONAL FUNCTIONS defined on the Revouus Sphere tor to periods MPLS useful in MANY problems! 4- We know rational functions are not enough -=> MAX COT of Fegunia Ints might be more complated

D= 2 olge blosic frenchiere p²(²+4m²) Myo - 4m2 hm 0 $+\infty$ topologically N Remain Sphere - 10 15

redeed there exist a charge of voisbles
that "stroightens out" the Granch cut
$\phi^2 = m^2 \frac{(1-x)^2}{x} \qquad \qquad$
RATIONAL FUNCTION
1/ forly 1 square root of deprese up to 2
oppens, we expect results to be shill MPLS.
Note that $\sqrt{X-Q}$, degree are
is the source os degree 2, sending one point to as
$\int \frac{dx}{\sqrt{(x-a)(x-b)}} \left(\begin{array}{c} x \rightarrow \frac{1}{x} + b \end{array} \right) = \int \frac{dx}{x^2} \frac{1}{\sqrt{(\frac{1}{x}+b-a)(\frac{1}{x})}} \\ \frac{depree}{2} = \int \frac{dx}{x^2} \frac{1}{\sqrt{(x-a)(x-b)}} \text{one single root depree 1} \\ \frac{dx}{\sqrt{(x-a)(x-b)}} \frac{1}{\sqrt{(x-a)(x-b)}} \frac{1}{\sqrt$

Hings start Lecouring mterestrup f V Pn(x)clegree 4 or 3 => appin the source thing, sending 1 point to uguly General cose degree 4 $= \sqrt{l_{u}(X)}$ $V(x-a_1)(x-a_2)(x-a_3)(x-a_6)$ miny an proced as Torus ~ sunfoce of genus 1 ama mun 17

the lyeboic curve	· · · ·
y ² = P ₄ (x) ¹ s on Elliptic Curve	· · · ·
Elliphe lurve ~ Torus (T) 11 Riemon surfixe	
Repeat countruction of (e) MPLS => ituated introdes of "rational functions" on T	
Eu(n, n, x) Elliptic Polylogorthus	· · · · · · · · · · · · · · · · · · ·
12	3

Are they relevant or just a mathematical curissity? p2 m two-loop neurise groups, but of electron 2-loop propagator p2 funder , there sout that $(I-p^2-m)^2$ $- \left\{ \int \right\} = \int db \frac{1}{\sqrt{b(b - 4m^2)(b - (\sqrt{p^2} - m)^2)(b - (\sqrt{p^2} + m)^2)}}$ $4m^2$ Elliphic Interol of the Forst Kind! Cop groph, & mony more E4 hoested for this

Ellipsic curve is frot and supplet everyple of a Colobi-You Surface => relevant objects for String theory TEDAY'S HOT RESEARCH JOPIC a quearel theory of texted stepped on Coldi-You rinfords uning knowlidge fram STRING THEORY to compute general Tegunan Intycls " onalytically "