11 - Hultple Polylogsithms PART 2

MOLTIPLE POLYLOGARITAMS & FONCTIONAL RELATIONS Recoll definition of HPLs $G[a_1,\ldots,a_n;X] = \int_0^1 \frac{dt}{t-a_1} G[a_2,\ldots,a_n;t]$ MPLS fulfe nou-trivial functional relations if voridale "x" oppose with complicated functional dependence - moreorer sometimes it is ponille to expren MPLs in terms of simpler functions > we'll see how to make seure of these though 1

Fame of HPLs d	ue to	· · · · · · · · · · ·	
- extreme symme	try s'uplicity		· · · · · · · ·
- wide sylicatile physics problem	hy to diverse s!	high-euorgy	· · · · · · · ·
Remanly cononcol	2 d'fferential I	guations col	fed
by one loop but	60 (u D~2	· · · · · · · · · ·	· · · · · · ·
$\frac{d\bar{m}}{dp^2} = \begin{pmatrix} 2-D\\ 2 \end{pmatrix} \begin{bmatrix} 0\\ \overline{\sqrt{p^2}} \end{bmatrix}$	$\frac{2}{(p^2+4m^2)}$	$\frac{1}{p^2 + 4m^2}$	m
Define NDW $p^2 = m^2 \left(\frac{1-X}{X}\right)^2$	$\frac{d}{dp^2} = \frac{dx}{dp^2}$	$\frac{d}{dx} = \frac{1}{m^2 C}$	$\frac{x^{2}}{x^{2}-1}dx$
			2

$=) \qquad \qquad$
result is the in X
X colled LANDAU VARIANIE
$f = 0 < \times < 1$ then $p^2 > 0$ (Eucliden Knematics!)
at every order repult written os
$\int dx d \downarrow : \downarrow f G(\bar{a}; \times)$
J
$\vec{a} = \frac{1}{2} \vec{a} = \frac{1}{2} \vec{a} + \frac{1}{2} \vec{b} + \frac{1}{2} \vec{b}$

Explicitly for bubble, M2
$\frac{d m_1^{(0)}}{d \times} = 0 \implies m_2^{(0)} = C_0$ 1boundary cond
$\frac{dm_{2}^{(n)}}{dx} = \frac{2}{x} \frac{m_{1}^{(o)}}{1} + \left(\frac{2}{x+1} - \frac{1}{x}\right) c_{0}$ T_{ADPOLE}
$[u \text{ our normetro have}] \\ m_{1} = 1 + \varepsilon^{2} \frac{\pi^{2}}{12} - \varepsilon^{3} \frac{3}{3} + O(\varepsilon^{3}) \\ \varepsilon = \left(\frac{2-D}{2}\right) \\ \varepsilon = \left(\frac{2-D}{2}\right$
$ m_{2}^{(1)} = 2 G(0, x) + C_{0} \left[2 G(-1, x) - G(0, x) \right] + C_{1} $ $ 1 must be fixed size ! $

We	Con	UP	regulor, by	remen Ll
M2	= (2	$\left(-\frac{D}{2}\right)$	$\sqrt{p^2(p^2+\mu m^2)}$	M_z $1_{physical integral}$ must be regular at $p^2 = 0$
M 2 -	- 1 E		<u> </u>	$\frac{1}{\varepsilon} \frac{X}{m^2(x-1)(x+1)} M_2$
10	so (pol	Cones)	ronds to mist d	$X \rightarrow 1 \left(p^2 = m^2 \left(\frac{1 - x}{x} \right) \right)$
M2°		$\frac{1}{\varepsilon} - \frac{1}{m^2}$	$\frac{\chi}{(\chi-i)(\chi+i)}$	$\begin{array}{c} x - 31 \\ \sim \\ \sim \\ \times -1 \end{array} \qquad \qquad$
(1) 112) = -	<u>X</u> (x-1) (x	-+1) [2410,	$(x) + C_{1} + C_{0} \left(2(1-1)x - C_{1}(0,x) \right)$

$M_{z}^{(n)} \sim \frac{1}{x-1} \begin{bmatrix} c_{1} + (x-1) + \cdots \\ y \end{bmatrix}$ $M_{z}^{(n)} \sim \frac{1}{x-1} \begin{bmatrix} c_{1} + (x-1) + \cdots \\ y \end{bmatrix}$ $M_{z}^{(n)} \sim \frac{1}{x-1} \begin{bmatrix} c_{1} + (x-1) + \cdots \\ y \end{bmatrix}$
As zegulority tells us that $C_0 = C_1 = 0$ $M^{(0)}$
$m_2^{(1)} = 2G(o, x) = 2\log(x) \text{prefleg simple}$
$\frac{d m_{2}^{(n)}}{d x} = \frac{2}{x} \frac{m_{1}^{(n)}}{m_{1}} + \left(\frac{2}{x+1} - \frac{1}{x}\right) m_{2}^{(n)}$ $= \left(\frac{2}{x+1} - \frac{1}{x}\right) 2 G(0, x)$

$M_{2}^{(1)} =$	46(-1,0	₽, ×) -	2 G (0, 0	(x) +Cr J sbel to be fred	
oppin I	wout	$H_2^{(2)}$	$\sim \frac{1}{\chi - 1}$	m ₂ ⁽²⁾	→ Fn+p 00×→1
G(-1,0	$\left(\begin{array}{c} X = 0 \\ X = 0$	$\times \frac{dt}{t+1}$	log (+)	در) (hev x→1
G(-1, P,	1) =	$-\frac{\pi^2}{12}$	=	52 2	
$\frac{10}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$	~ [>1 X-1 [C2 +	32]		$\frac{2z-3z}{7}$

Finally we get
$M_2^{(2)} = 4G(-1, 0, x) - 2G(0, 0, x) - 32$
only functions and Nouseas of transcendental
the at every order in $\mathcal{E} = \mathcal{E}^{\mathbb{N}} = \text{weight } \mathbb{N}$
We say that integrals that fulfil conourcel d'flerentel equations are also of
UNIFORM TRANSCENDENTAL WEIGHT (UT)
$0 < \chi < 1 = 7$ Euclideon $p^2 > 0 = 7 \leq 0$
8

FUNCTIONAL RELATIONS & LINEAR INDEPENDENCE
If we time dout MPLS as special cose of sterated
intends, we see that statement ou lineor independence
opples here stronglit forwordly -
Fon MPLs Wi = dlog(x-ai)
if all Qi different, then clearly all Wi are independent
=> Z f RATIONAL FUNCTION puch that
$\sum_{i} b_i W_i = df$
to by constructions, MPLs evoluated at generic
point "x" one lineorly independent if hey look"
different => ofter opplying all SHUFFLES.

For lives independence it is FUNDATIENTAL that MPLS are function of the some voide (X) and that X does not enter in the indices! $G[3,2,0,X) \neq G(2,1,0,X) = tc$ if instead & evaluated of some special numerical point, tels is in general not true! Also G(0,1, x) count be early compret will G(0,1,1-X) Lorony nou-trivol function they might in general not be Independent => FUNCTIONAL RECATIONS 10

We know this very well with normal logs
$log(X) = -log(\frac{1}{X})$
$\Rightarrow G(0, x) = -G(0, \frac{1}{x})$
SOMETIMES functional relations involve cropping a brouch out !
$G(1, \frac{1}{x}) = \log(1 - \frac{1}{x}) if X > 1 ok$ $if OZ \times L1 brouch i$ $art i$
Keep trock of at with it x -> x tis
$\log\left(\left(X+i\varepsilon-i\right)/(X+i\varepsilon)\right) = \log\left(X-1+i\varepsilon\right) - \log\left(X+i\varepsilon\right)$
$= \log(1-x) + \log(-1+i\varepsilon) - \log(x)$
$= G(1, x) - C(0, x) + \frac{1}{1} \qquad iung way port $

lupportout point: when dealing will MPLS
if we understand functional relations
for WEIGHT 1 functions (LOGS!)
We can derive ALL FUNCTIONAL RELATIONS of
our weight stratiely!
for example we have seen
$\int G(1, \frac{1}{x}) = G(1, x) - G(0, x) + i\pi \int 0 \le x \le 1$
$\left(G\left[0,\frac{1}{x}\right] = -G\left[0,x\right] \qquad T \qquad I_{m}(x) > 0$
tran here we can deive annihor relations for 1/x
$G[0, 1, \frac{1}{X}) = \left(\begin{array}{c} \frac{dt}{t} & G(1, t) \\ \frac{dt}{t} & G(1, t) \end{array} \right)$
J Z 12

$\frac{\partial}{\partial X} G[0, \frac{1}{2}, \frac{1}{2}] = -\frac{1}{X^2} \frac{1}{\binom{1}{X}} G[1, \frac{1}{2}]$	
$= \frac{1}{x}G(\frac{1}{x})$	· · · · · · · · · · · · · · · · · · ·
$= \frac{1}{x}G(\rho, x) - \frac{1}{x}G(1, x) - \frac{1}{x}\pi$	1 0≤×L1 Im(×)>0
to integrating back	
$G\left[0,1,\frac{1}{x}\right] = \int dx \left[\frac{1}{x} G(0,x) - \frac{1}{x} G(1,x) - \frac{1}{x} G(1,x) \right]$	- <u>m</u>] + C
$= G(0,0,\times) - G(0,1,\times) - i\pi G(0,\times)$	t C TT constant to be fixed
$u_{1}(x) = -G(0, 1, 1) + C \Rightarrow C =$	2 G(91, 1) -13

$G(0,1,1) = \int_{0}^{1} \frac{dx}{x} \log(1-x) = -L_{12}(1) = -\frac{\pi^{2}}{6}$
$G[0,1,\frac{1}{x}] = G[0,0,x] - G[0,1,x] - \frac{\pi^2}{3} - i\pi G[0,x]$
weight 2 oll terms of weight 2!
CONVECTURE :
At is conjectured that ALL FUNCTIONAL RELATIONS
among MPLS preserve transcendental weight
INPORTANT: by differentiating on MPL wrt only
voriable (INCLUSING) we obtain MPLS of LOWER WEIGHT
in this way we can work out ANY functional
relation bottom-up, stanting from LocaRITHINS
in other words, if we understand functional relations
for logarithms, we understand them for ANY MOLS

Let us consider the two following qualifies (0 <x<1)< th=""></x<1)<>
$A = G(-1, 1, \times)$ $P \left[1 + (1+\times) - \log \log \log \log \log 2 - \pi^2 \right]$
$B = \begin{bmatrix} -L_{12} \\ 1 \end{bmatrix} + \log 2 \log (11 \times 1) = \frac{1}{2} + \frac{1}{12} \end{bmatrix}$
we can prove at by differentiation
$\frac{\partial A}{\partial X} = \frac{1}{X+1} G(1, X) = \frac{\log(1-X)}{1+X} \qquad \qquad$
$\frac{\partial B}{\partial x} = + \log \frac{(1-x)/2}{1+x} + \log(2) \frac{1}{1+x} = \log(1-x)$
there where $x \rightarrow 0$ of $A(0) = 0$ $B(0) = -\frac{TT^2}{12} + \frac{log^2}{2} - \frac{log^2L}{2} + \frac{TT^2}{12} = 0$
(15)

if we one interested into relations only at higher we glut, we need to strate this	functions proceedure
A = G(0, 1, 1, X)	· · · · · · · ·
$B = -L_{12}(x) \log(1-x) - \frac{1}{2} \log x \log^{2}(1-x)$	· · · · · · · ·
$+\frac{\pi^2}{6}\log(1-x) - L_{13}(1-x) + 3_3$	· · · · · · · ·
to provo A = B	· · · · · · ·
$\frac{\partial A}{\partial x} = \frac{1}{x} G(1, 1, x) = \frac{1}{x} \frac{1}{2} \log^2(1-x)$	
$\frac{\partial B}{\partial X} = + \frac{\log(1-x)}{2X} + \frac{L_{12}(x)}{1-x} - \frac{1}{2X} \log^2(1-x) +$	log(x)logtx) I-x
$-\frac{\pi^2}{6}\frac{1}{1-x}+\frac{L_{12}(1-x)}{1-x}$	

$\frac{\partial A}{\partial x} =$	$\frac{\log^2(1-x)}{2\times}$
<u>ob</u> =	$loy^{2}(1-x) + \frac{1}{2x} \left[L_{12}(x) + L_{12}(1-x) + log \times log(1-x) - \frac{\pi^{2}}{6} \right]$
	1- to be could this should be zero!
<i>C</i> =	$L_{12}(x) + L_{12}(1-x) + \log x \log(1-x) - \frac{\pi^2}{6}$
10 I	need to consider now
$\frac{\partial x}{\partial x} =$	O [obvious imme we go down to logs!]
Luset	$\frac{\partial L_{i2}(x)}{\partial x} = -\frac{\log(1-x)}{x}; \frac{\partial L_{i2}(1-x)}{\partial x} = \frac{\log(x)}{1-x}$
ous	$nobole C(x \rightarrow \frac{1}{2}) = 0$
Urng	$L_{12}\begin{pmatrix} 1\\ 2 \end{pmatrix} = \frac{T^{2}}{12} - \frac{\log^{2}(2)}{2}$ etc 17