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1 Interacting non-abelian gauge theories (P&S 16.1)

The goal of this section is to derive the Feynman rules of non-abelian gauge theories (following P&S section 16.1).
This would be useful for several reasons, mainly

1. Calculating observables: Feynman rules are a recipe for the calculation of Feynman diagrams. Feynman
diagrams are needed for the calculation of scattering amplitudes, which can eventually be using to calculate
cross sections.

2. Understanding the gauge structure of non-abelian theories : in gauge theories, some degrees of freedom are
unphysical, in the sense that they are gauge-dependent, and we identify systems which are related by gauge
symmetry as being physically equivalent (gauge symmetry=redundancy). E.g as was shown in class, in an
abelian gauge theory, the starting point is a vector field with 4 degrees of freedom. One degree of freedom
can be removed using the E.O.M, and an additional degree of freedom can be removed by fixing a gauge
and thus picking a particular description out of an infinite set of equivalent descriptions related by gauge
transformations. For an abelian theory, the cancelation of the non-physical degrees of freedom (=transverse
photon polarization) is insured by the Ward identity. For a non-abelian theory, this cancelation is more
complicated and requires the introduction of additional fields called ghosts.

3. Calculating the β-function : the coupling in gauge theories changes with the energy scale, and the energy
dependence is given by the β-function. For example, QCD is a non-abelian gauge theory, and its coupling
gets weaker in higher energies (=smaller distances), and stronger in lower energies (=larger distances). The
latter leads to the phenomena of confinement.

Let us begin with deriving the Feynman rules for the Yang-Mills Lagrangian.

L = −1

4
F aµνFaµν + ψ̄(i /D −m)ψ . (1)

with a a group index and ψ in some irreducible representation r of the gauge group G (group indices in last term
are suppressed). We have the field strength

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2)

fabc are the structure constants of G. The covariant derivative

Dµ = ∂µ − igAaµtar . (3)

We can split out Lagrangian to the free and interacting parts

L = L0 + Lint ,

L0 =
1

2
Aµ
(
ηµν∂2 − ∂µ∂ν

)
Aν + ψ̄(i/∂ −m)ψ , (4)

Lint = −gfabc(∂λAaσ)AλbA
σ
c −

1

4
g2feabfecdAλaA

σ
bAcλAdσ + gAaλ(ψ̄tarγ

λψ) .
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Our free theory consists of d(r) Dirac fermions and d(G) gauge fields. We can solve the free theory exactly
by performing the gaussian integration. The building block of the free theory are the propagators (or 2-point
functions)

〈
ψiα(x)ψ̄jβ(y)

〉
=

∫
d4k

(2π)4

(
i

/k −m

)
αβ

δije
−ik(x−y) , (5)

〈Aiµ(x)Ajν(y)〉 =

∫
d4k

(2π)4

(
−iηµν
k2

)
δije

−ik(x−y) , (6)

with which we can calculating all n-points functions in the free theory using Wick’s theorem. Now we can write
down the Feynman rules for the interaction vertices. The Feynman rule for the fermion gauge interaction is
straightforward. For the gauge-fields self-interaction some care is required. First we must label our external legs
with Lorenz and group index and fix a momentum convention, in out case we take all momenta to be points
inwards. For example, we calculate the 3 gauge boson vertex V (3) be taking the variational derivative of the action
in momentum space

(2π)4δ4(k + p+ q)× V (3)µνρ

abc (k, p, q) ≡ i
(

δS

δAaµ(k)Abν(p)Acρ(q)

)
, (7)

with

S =

∫ 3∏
i=1

d4ki
(2π)4

(2π)4δ4

(
3∑
i=1

ki

)[
igfabck1λAaσ(k1)Aλb (k2)Aσc (k2)

]
,

δAaµ(k1)

δAνb (k2)
= δabηµν(2π)4δ4(k1 − k2) . (8)

For the 3 gauge boson vertex, there are 3! possible contractions leading to 6 distinct terms in the vertex. For the
4 gauge boson vertex, there are 4! possible contractions. We can group these 24 contraction into 6 group of equal
terms, leading to 6 distinct terms in the vertex and the cancelation of the 1

4 factor. Similarly to the abelian theory,

we know that the non-abelian gauge boson has only 2 physical polarization states, and we expect that physical
processes cannot produce a non-physical polarization state. Therefore the physical amplitudeMµ(k, ...) (=with on
shell external states) with an external gauge boson with momentum kµ should satisfy

kµMµ(k, ...) = 0 . (9)

This relation can also be understood in the following way: one can perform a little group transformation Λµν , which
by definition leaves the momentum invariant pµ = Λµνp

ν , but shifts the polarization vector by a vector proportional
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to the momentum ε
′µ = Λµν ε

ν = εµ + cpµ. Lorentz invariance requires

εµMµ = ε′
µM′µ = (εµ + cpµ)ΛνµMν = (εν + 2cpν)Mν → pµMµ = 0 . (10)

Let us check the ward identity in a simple case in a non-abelian theory, looking at a fermion-anti-fermion pair
scattering into two gauge bosons. The first two diagrams give us

iMµν
1,2ε
∗
µ(k1)ε∗ν(k2) = (ig)2v̄(p+)

[
γµta

i

/p− /k2 −m
γνtb + γνtb

i

/k2 − /p+ −m
γµta

]
u(p)ε∗µ(k1)ε∗ν(k2) . (11)

To check the ward identity, we replace ε∗ν(k2)→ k2ν ,

iMµν
1,2ε
∗
µ(k1)k2ν = (ig)2v̄(p+)

[
γµta

i

/p− /k2 −m
/k2t

b + /k2t
b i

/k2 − /p+ −m
γµta

]
u(p)ε∗µ(k1) . (12)

Using the on-shell condition for the external fermions

(/p−m)u(p) = 0 , v̄(p+)(−/p+ −m) = 0 , (13)

we can safely shift k2 by this quantities so we can get rid of the denominators of the fermion propagators, so we
find

iMµν
1,2ε
∗
µ(k1)k2ν = (ig)2v̄(p+)

(
−iγµ[ta, tb]

)
u(p)ε∗µ(k1) = −g2v̄(p+)

(
fabctcγ

µ
)
u(p)ε∗µ(k1) . (14)

For an abelian theory, fabc = 0 and we recover the ward identity. For the non-abelian theory, we must have an
additional contribution in order to cancel this non-zero result. This contribution comes from the third diagram

iMµν
3 ε∗µ(k1)ε∗ν(k2) = igv̄(p+)γρtcu(p)

−i
k23
ε∗µ(k1)ε∗ν(k2)

× gfabc [ηµν(k2 − k1)ρ + ηνρ(k3 − k2)µ + ηρµ(k1 − k3)ν ] . (15)

We again replace ε∗ν(k2)→ k2ν and find

iMµν
3 ε∗µ(k1)k2ν = igv̄(p+)γρtcu(p)

−i
k23
ε∗µ(k1)

× gfabc [kµ2 (k2 − k1)ρ + kρ2(k3 − k2)µ + ηρµ(k1 − k3) · k2]

= ig2fabcv̄(p+)γρtcu(p)
−i
k23
ε∗µ(k1)

[
ηρµk23 − k

ρ
3k
µ
3 − ηρµk21 + kρ1k

µ
1

]
. (16)

The last three terms vanish. The second term due to on-shell condition of external fermions

v̄(p+)/k3u(p) = −v̄(p+)(/p+ /p+)u(p) = −v̄(p+)(m−m)u(p) = 0 (17)

The third term due to on-shell condition of external massless gauge field

k21 = 0 . (18)
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Lastly, assuming the other external gauge field is physical (=transversely polarised)

ε∗µ(k1)kµ1 = 0 (19)

the last term vanishes, leaving us with

iMµν
3 ε∗µ(k1)k2ν = +g2v̄(p+)(fabctcγ

µ)u(p)ε∗µ(k1) , (20)

which exactly cancels the contribution from the other two diagrams. Note that the Ward identity relied on the
fact the coupling appearing the gauge-fermion vertex is the same coupling appearing in the 3-gauge boson vertex.
Conversely, starting from a gauge-invariant theory we find that these couplings must be identical.

Gauge invariance → Same g in all vertices ← Ward identity .

But there is something wrong in this derivation!

In order to recover the Ward identity we had to assume the other gauge field is physical (=transversely polarized),
and our goal was to prove that only physical states can be created by a physical process. In order to proceed let us
define a complete polarization basis for

kµ = (k0,k) , kµkµ = 0 . (21)

First we define the two (physical) transverse polarizations

εTiµ = (0, n̂i) , n̂i · k = 0 , i = 1, 2 . (22)

Additionally we have the longitudinal polarization, proportional to kµ, and the timelike polarization state, propor-
tional to k̃µ = (k0,−k)

ε±µ (k) =
1√
2|k|

(k0,±k) . (23)

ε+µ (k) and ε−µ (k) are the forward and backward light-like polarization vectors. The four polarization vectors obey
the following orthogonality relations

εTi · ε∗Tj = −δij , ε+ · εTi = ε− · εTi = 0 , (24)

(ε+)2 = (ε−)2 = 0 , ε+ · ε− = 1 . (25)

They satisify the completness relation

ηµν = ε−µ ε
+∗
ν + ε+µ ε

−∗
ν −

∑
i=1,2

εTiµε
T∗
iν . (26)

Let us check if this scattering can produce two gauge field in unphysical polarizations, namely ε−µ (k1) and ε+µ (k2). We
already did most of the work since ε+µ (k2) ∝ k2µ, we can use our result, and account for the different normalization,
to find that amplitude to be

iMµν
3 ε−∗µ (k1)ε+∗µ (k2) = ig2fabcv̄(p+)γρtcu(p)

−i
k23
ε∗µ(k1)

1√
2|k2|

[kρ1k
µ
1 ] ,

= g2fabcv̄(p+)/k1tcu(p)
1

k23

|k1|
|k2|

(27)

where we used k̃µkµ = 2|~k|2. So it seems like the amplitude for an unphysical process is non vanishing. Can we just
ignore it? When we consider the theory on the classical level (=without quantum corrections, tree-level diagrams),
we could. However, a problem appears at the quantum level (=loop diagrams): internal gauge propagators seem to
contain unphysical degrees of freedom (remember ηµν = sum of all polarizations), whose contribution, in particular
to the imaginary part of the diagram, is non-zero as we have seen. In other words, we find that in our naive approach
quantum corrections would include contribution from unphysical degrees of freedom, and we can either violate the
optical theorem (and therefore unitarity) or allow the production of unphysical states. The suppression of these
unphysical degrees of freedom in a non-abelian gauge theory is done with the Faddeev-Popov gauge fixing procedure
which introduces additional degrees of freedom known as ghosts. This topic will be covered in the following lectures.
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2 Weinberg-Witten theorem

In a paper called ”Limits on massless particles” from 1980, Weinberg and Witten prove the following theorems

1. A theory with a Lorentz-covariant conserved charge Jµ cannot contain a massless spin j > 1/2 particle which
has a non vanishing charge under the conserved charge Q ≡

∫
d3x J0.

2. A theory with a Lorentz-covariant conserved stress-energy tensor Tµν cannot contain a massless spin j > 1
particle which has a non vanishing charge under the conserved charge vector Pµ ≡

∫
d3x T 0µ.

Let us consider the basis of our physical states denoted by the two helicity states |p,±j〉 , |p′,±j〉. These states
satisfy

Q |p,±j〉 = q |p,±j〉 , Q |p′,±j〉 = q |p′,±j〉 , (28)

Pµ |p,±j〉 = pµ |p,±j〉 , Pµ |p′,±j〉 = p′
µ |p′,±j〉 . (29)

The proof is carried out by calculating the matrix elements

lim
p→p′

〈p′,±j| Jµ |p,±j〉 , lim
p→p′

〈p′,±j|Tµν |p,±j〉 . (30)

By assuming charge conservation and Lorentz covariance, we would conclude that having charged massless particles
with spins j > 1/2 (or j > 1 in the second case) leads to a contradiction, rendering the theory inconsistent with
Lorentz invariance. First we note that

〈p′|Q |p〉 = qδ3(p′ − p) . (31)

But also

〈p′|Q |p〉 =

∫
d3x 〈p′| J0(t, x) |p〉 =

∫
d3x 〈p′| eiP ·xJ0(t, 0)e−iP ·x |p〉 (32)

=

∫
d3 xei(p

′−p)x 〈p′| J0(t, 0) |p〉 = (2π)3δ3(p′ − p) 〈p′| J0(t, 0) |p〉 , (33)

Therefore

lim
p′→p

〈p′| J0(t, 0) |p〉 =
q

(2π)3
. (34)

We can generalize this result directly from Lorentz invariance

lim
p′→p

〈p′| Jµ(t, 0) |p〉 =
qpµ

E(2π)3
6= 0 . (35)

Note that the last equation also implies charge conservation. Simlarly we can find

lim
p′→p

〈p′|Tµν(t, 0) |p〉 =
qpµpν

E(2π)3
6= 0 . (36)

Now since p, p′ are light-like

(p′ + p)2 = 2|p||p′|(1− cos θ) ≥ 0 . (37)
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For θ 6= 0, p′ + p is time-like and we can boost to a frame where its spatial component vanishes, so that

p = (|p|,p) , p′ = (|p|,−p) . (38)

First we can find the frame without a spatial component and different energies, and than we boost along the
propagation direction and equalize the energies (doppler effect). If we rotate around the propagation axis by an
angle φ, we know that

|p,±j〉 → e±iφj |p,±j〉 , |p,±j〉 → e∓iφj |p,±j〉 (39)

On the other hand we know how the generator Jµ rotates under Lorentz since it in the fundamental Lorentz
representation

[Li, J0] = 0 , [Li, Jj ] = iεijkJk , (40)

Therefore

e±2iφj 〈p′,±j| Jµ(t, 0) |p,±j〉 = Λ(φ)µν 〈p′,±j| Jν(t, 0) |p,±j〉 (41)

Since Λ(φ)µν can only produce the Fourier components e±iφ, 1, for j > 1/2 the matrix element must vanish. In the
limit p → p′ this leads to a contraction with the non vanishing value we have calculated earlier. We conclude no
Lorentz covariant QFT with a conserved current can have charged massless spin-1 (or higher) particles. Similarly,

e±2iφj 〈p′,±j|Tµν(t, 0) |p,±j〉 = Λ(φ)µαΛ(φ)νβ 〈p′,±j|Tαβ(t, 0) |p,±j〉 (42)

implies that for j > 1 the matrix element must vanish. In the limit p→ p′ this leads to a contraction with the non
vanishing value we have calculated earlier.

Notable exception I : The Gluon

We know we can have massless spin 1 particles in non-abelian theories (e.g the gluon of QCD is massless gauge
boson of a gauged, non-abelian SU(3) symmetry, and therefore it is charged under the conserved charged). In the
presence of matter, the current is not conserved ∂µ 〈Jµa 〉 6= 0, but rather Dµ 〈Jµa 〉 = 0. In the absence of matter,
the conserved current of the pure Yang-Mills theory is

Jµa = −Fµνc f cabAνb , (43)

which by construction is conserved, ∂µ 〈Jµa〉 = 0. However the physical gauge field Aνa is not Lorentz covariant,
since it transforms as

Aµ → ΛµνA
µ + ∂µΩ(x,Λ) , (44)

which implies of course that Jµa is not Lorentz covariant,

Jµa → ΛµνJ
νa + ... . (45)

Therefore the current is not Lorentz covariant and the proof does not apply. In this point one should appreciate the
tight connection between the Lorentz and gauge transformations: requiring a Lorentz covariant current is equivalent
to requiring that it is gauge invariant! By writing the current in a different form,

Jµ = ∂νFµν , (46)

it is clear that the current is not gauge invariant, and therefore not Lorentz covariant. One could restore Lorentz
covariance by allowing the field Aµ to have non-physical polarizations, however that would undermine the basis of
the proof which relies on the physical basis of the massless particle.

Notable exception II : The Graviton

Gravity can be described as a long range force mediated by a spin-2 particle. The Weinberg-Witten theorem does
not apply for the graviton for similar reasons - one cannot construct a Lorentz covariant (or gauge invariant) stress-
energy tensor. Writing the metric as linear perturbations around the flat Minkowski metric gµν(x) = ηµν + hµν(x),
one can calculate the stress-energy tensor Tµν as a function of hµν(x). However, similarly to the gauge field in the
non abelian case, hµν(x) does not transform covariantly under Lorentz.
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