Relativity, Particles, Fields SS 2017

Prof. Andreas Weiler (TUM), Dr. Ennio Salvioni (TUM) https://www.t75.ph.tum.de/teaching/ss17-relativity-particles-fields/

Sheet 9: Representations of Lorentz Group, Poincaré Group (4.7.2017)

1 Finite Representations of the Lorentz Group

The six generators of the Lorentz group, $J^{\mu\nu} = i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})$, obey the commutation relations

$$[J^{\mu\nu}, J^{\rho\sigma}] = i(g^{\nu\rho}J^{\mu\sigma} - g^{\mu\rho}J^{\nu\sigma} - g^{\nu\sigma}J^{\mu\rho} + g^{\mu\sigma}J^{\nu\rho}).$$
(1)

Define the generators of rotations and boosts as $L^i = (1/2)\epsilon^{ijk}J^{jk}$ and $K^i = J^{i0}$, where i, j, k = 1, 2, 3. Infinitesimal Lorentz transformations can then be written as

$$\psi \to (\mathbf{1} - i\boldsymbol{\theta} \cdot \boldsymbol{L} + i\boldsymbol{\eta} \cdot \boldsymbol{K})\psi.$$
⁽²⁾

a) Derive explicitly the commutation relations of the operators L^i and K^i . Then define $J_+ = (L + iK)/2$ and $J_- = (L - iK)/2$. Show that the components of J_+ and J_- separately fulfill the commutation relations of angular momentum and that they commute with each other.

b) Any finite irreducible representation generated by J_+ is locally isomorphic to a representation generated by a usual angular momentum, i.e. locally isomorphic to a representation of SU(2). Therefore part **a**) implies that all finite-dimensional representations of the Lorentz group correspond to pairs (j_-, j_+) of integers or half-integers.

Note: Since the J_+ are non-hermitian, $J_+^{\dagger} = J_-$, the global structure of the representations is however a non-unitary analytic continuation of the corresponding SU(2) representations. J_{\pm} generate the group $Spin(1,3) \cong SL(2,\mathbb{C})$, which is in turn the (universal) double cover of the proper orthochronous Lorentz group SO(1,3).

Consider the simplest non-trivial representations. Those are the left- and right-handed Weyl spinors $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$. Use the fact that spin-1/2 representations of angular momentum are generated by $\sigma/2$ to show that the Weyl spinors transform as

$$\psi^{L} \to \Lambda_{L} \psi^{L} = \left(\mathbf{1} - (i\boldsymbol{\theta} + \boldsymbol{\eta}) \cdot \frac{\boldsymbol{\sigma}}{2} \right) \psi^{L},$$

$$\psi^{R} \to \Lambda_{R} \psi^{R} = \left(\mathbf{1} - (i\boldsymbol{\theta} - \boldsymbol{\eta}) \cdot \frac{\boldsymbol{\sigma}}{2} \right) \psi^{R}.$$
 (3)

Use $\boldsymbol{\sigma}^* = -\sigma^2 \boldsymbol{\sigma} \sigma^2$ and the explicit form of $\Lambda_{L,R}$ to show that $\sigma^2 \Lambda_L^* \sigma^2 = \Lambda_R$. Show how one can infer from this that if $\psi_L \in (\frac{1}{2}, 0)$, then $\sigma^2 \psi_L^*$ is a right-handed Weyl spinor, i.e. $\sigma^2 \psi_L^* \in (0, \frac{1}{2})$.

c) Prove that if ψ_R and ξ_R are right-handed Weyl spinors and $\sigma^{\mu} \equiv (1, \boldsymbol{\sigma})$, then $U^{\mu} = \xi_R^{\dagger} \sigma^{\mu} \psi_R$ is a Lorentz four-vector. Show the same for $V^{\mu} = \xi_L^{\dagger} \bar{\sigma}^{\mu} \psi_L$, where ψ_L and ξ_L are left-handed Weyl spinors and $\bar{\sigma}^{\mu} \equiv (1, -\boldsymbol{\sigma})$.

d) Verify explicitly that for $\Lambda_L = \exp(-i\theta \boldsymbol{n} \cdot \boldsymbol{\sigma}/2)$, $L(\Lambda_L)$ is a rotation by the angle θ around \boldsymbol{n} , where L follows from $V^{\mu} \to V'^{\mu} = L^{\mu}_{\nu} V^{\nu}$. Finally, show also that for $\Lambda_L = \exp(-\eta \boldsymbol{n} \cdot \boldsymbol{\sigma}/2)$, $L(\Lambda_L)$ is a boost of rapidity η (i.e. with boost parameters $\beta = \tanh \eta, \gamma = \cosh \eta$) in the direction \boldsymbol{n} .

2 Poincaré Group

In the Poincaré group, spacetime translations are added to the set of (homogeneous) Lorentz transformations,

$$x^{\mu} \to \Lambda^{\mu}_{\ \nu} x^{\nu} + a^{\mu}, \qquad a^{\mu} \in \mathbb{R}^4.$$
 (4)

Hence a new generator P^{μ} has to be added to the Lorentz algebra in Eq. (1), to form the Poincaré algebra. The following relations are added:

$$[P^{\mu}, P^{\nu}] = 0, \qquad [P^{\mu}, J^{\rho\sigma}] = i(g^{\mu\rho}P^{\sigma} - g^{\mu\sigma}P^{\rho}).$$
(5)

a) Consider $P^2 = P_{\mu}P^{\mu}$ and $W^2 = W_{\mu}W^{\mu}$, where $W_{\mu} \equiv (1/2)\epsilon_{\mu\nu\sigma\rho}P^{\nu}J^{\sigma\rho}$ is the Pauli-Lubanski polarization vector. Using the commutation relations for the generators of the Poincaré group, show that P^2 and W^2 are Casimir operators for this algebra, i.e. they commute with both $J_{\mu\nu}$ and P_{μ} .

b) Since the Poincaré group has rank 2, P^2 and W^2 are its only Casimir operators. Therefore a massive state can be labelled by two numbers, its mass and spin. Show that for a massless particle, P^{μ} and W^{μ} must be proportional to each other, and use this to conclude that a massless state can be labeled by only one number (called *helicity*).

c) Show that $J^{\mu\nu}J_{\mu\nu}$ is a Casimir of the Lorentz group, but it is not a Casimir of the Poincaré group.