Relativity, Particles, Fields SS 2017

Prof. Andreas Weiler (TUM), Dr. Ennio Salvioni (TUM) https://www.t75.ph.tum.de/teaching/ss17-relativity-particles-fields/

Sheet 8: Muon Decay, Equations of motion (27.6.2017)

1 Muon decay

Consider the process of muon decay, $\mu^- \to e^- \bar{\nu}_e \nu_{\mu}$. The amplitude squared, summed over the spin states of the decay products and averaged over the spin states of the initial muon, is

$$|\mathcal{A}_{fi}|^2 = 64 \, G_F^2(k_1 \cdot k_2')(k_1' \cdot k_3'),\tag{1}$$

where G_F is the *Fermi constant*, k_1 is the four-momentum of the muon, and $k'_{1,2,3}$ are the four-momenta of the $\bar{\nu}_e, \nu_\mu$ and e^- , respectively. In the rest frame of the muon, its decay rate is therefore

$$\Gamma = \frac{32 G_F^2}{m} \int (k_1 \cdot k_2') (k_1' \cdot k_3') d\Pi_3(k_1),$$
(2)

where

$$d\Pi_n(k) \equiv (2\pi)^4 \delta^{(4)} \left(k - \sum_{j=1}^n k_j'\right) \prod_{j=1}^n \frac{d^3 k_j'}{(2\pi)^3} \frac{1}{2E_{k_j'}},\tag{3}$$

while $k_1^{\mu} = (m, \mathbf{0})$ with m the muon mass. All the final state particles can be taken massless.

In this problem we will evaluate Γ through the following analysis:

a) Show that

$$\Gamma = \frac{32 G_F^2}{m} \int \frac{d^3 k_3'}{(2\pi)^3} \frac{1}{2E_{k_3'}} k_{1\mu} k_{3\nu}' \int k_2'^{\mu} k_1'^{\nu} d\Pi_2(k_1 - k_3').$$
(4)

b) Use Lorentz invariance to argue that

$$\int k_2^{\prime \mu} k_1^{\prime \nu} d\Pi_2(q) = A q^2 g^{\mu \nu} + B q^{\mu} q^{\nu} , \qquad (5)$$

where A and B are numerical constants.

c) Show that

$$\int d\Pi_2(q) = \frac{1}{8\pi} \,. \tag{6}$$

Then, by contracting both sides of Eq. (5) with $g_{\mu\nu}$ and $q_{\mu}q_{\nu}$ and using Eq. (6), evaluate A and B.

d) Plug the results obtained in b) and c) into Eq. (4) and compute $d\Gamma/dE_e$, where $E_e \equiv E_{k'_3}$ is the electron energy. Note that the maximum value of E_e is reached when the electron is emitted in one direction, and the two neutrinos in the opposite direction. What is this maximum value?

e) Perform the integral over E_e to obtain the muon decay rate Γ . Using the measured values of the lifetime of the muon, 2.197 μ s, and of the muon mass, 105.66 MeV, determine the value of G_F in GeV⁻².

f) Define the *energy spectrum* of the electron as $P(E_e) \equiv \Gamma^{-1} d\Gamma / dE_e$. Note that $P(E_e) dE_e$ is the probability for the electron to be emitted with energy between E_e and $E_e + dE_e$. Draw a graph of $P(E_e)$ versus E_e/m .

2 Equations of motion in ϕ^4 theory

Consider the $\lambda \phi^4$ theory,

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \,.$$

Prove the equations-of-motion identity

$$(\Box_x + m^2) \langle 0|T\{\phi(x)\phi(y)\}|0\rangle = -\frac{\lambda}{3!} \langle 0|T\{\phi(x)^3\phi(y)\}|0\rangle - i\delta^{(4)}(x-y),$$
(7)

where ϕ indicates the field in Heisenberg (and not interaction) picture,

a) At $O(\lambda^0)$ and $O(\lambda^1)$;

b*) At $O(\lambda^2)$;

by explicitly computing the left- and right-side at each order in λ , with the help of the Feynman rules.

Hint: You can assume that the time-evolution operator U acts on $|0\rangle$ as $U|0\rangle \rightarrow |0\rangle$. Then, you should obtain for the vacuum expectation value (VEV) that appears on the LHS of Eq. (7) an expression that suggests the following physical interpretation: assuming for example $x^0 > y^0$, one particle is created at the spacetime point y, it "propagates" (at appropriate order in λ) until point x, and here it is annihilated. A similar interpretation holds for the first term on the RHS. Use this picture to draw the relevant Feynman diagrams in each case.

Note: To turn the above intuitive picture into a rigorous one, we need to replace in Eq. (7) the ground state of the free theory, $|0\rangle$, with the ground state of the interacting theory, $|\Omega\rangle$. Then one can prove that to compute correlation functions like $\langle \Omega | T\{\phi(x)\phi(y)\} | \Omega \rangle$, only connected diagrams need to be considered, i.e. diagrams where every line is connected to an external point. See later lectures and, for reference, the discussion on pages 82-99 of Peskin and Schroeder.

Note 2: If you followed the discussion in the lecture on 29.6, you can alternatively calculate

$$(\Box_x + m^2) \langle \Omega | T\{\phi(x)\phi(y)\} | \Omega \rangle = -\frac{\lambda}{3!} \langle \Omega | T\{\phi(x)^3\phi(y)\} | \Omega \rangle - i\delta^{(4)}(x-y), \tag{8}$$

and ignore the hint and note above.