Relativity, Particles, Fields SS 2017

Prof. Andreas Weiler (TUM), Dr. Ennio Salvioni (TUM) https://www.t75.ph.tum.de/teaching/ss17-relativity-particles-fields/

Sheet 7: Wick's Theorem, Feynman Diagrams (20.6.2017)

1 Scattering in ϕ^3 theory

Consider the $g\phi^3$ theory,

$$\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{g}{3!} \phi^3 \,,$$

where the coupling constant g has the dimension of mass.

a) Use Dyson's formula and Wick's theorem to compute the amplitude for $\phi\phi \rightarrow \phi\phi$ scattering at $O(g^2)$. Proceed along the lines that we followed in class for the computation of nucleon-nucleon scattering in the scalar Yukawa theory.

b) Write down the Feynman diagrams for the $\phi\phi \rightarrow \phi\phi$ process, and use them to re-derive the expression of the amplitude. Notice that in the propagators appear the following Lorentz invariant quantities: $s = (p_1 + p_2)^2$, $t = (p_1 - p_4)^2$, $u = (p_1 - p_3)^2$, where p_1, p_2 are the four-momenta of the initial state particles, taken ingoing, while p_3, p_4 are the four-momenta of the final state particles, taken outgoing. The quantities s, t, u are called *Mandelstam variables*. Show that they satisfy $s + t + u = 4m^2$.

2 Vacuum to vacuum amplitude in ϕ^4 theory

Consider the $\lambda \phi^4$ theory,

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \,,$$

where the coupling constant λ is dimensionless. Examine the quantity $\langle 0 | S | 0 \rangle$, where S indicates the S-matrix, to order λ^2 .

a) Identify the different diagrams with the different contributions arising from an application of Wick's theorem.

b) Confirm that to order λ^2 , the combinatoric factors work out so that the vacuum to vacuum amplitude is given by the exponential of the sum of distinct vacuum bubble types, that is

$$\langle 0|S|0\rangle = \exp\left(8 + 8 + 1 + ...\right)$$

If you are unsure about the combinatoric factors, you can use the Dyson series instead of Feynman diagrams.