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Sheet 6: Classical Source, Wick’s Theorem (13.6.2017)

1 Particle Creation by a Classical Source

In this exercise we return to the particle creation by a classical source. Recall from Sec. 5.8.2 of the
script that this process can be described by the Hamiltonian

H = H0 −
∫
d3x J(x)φ(x), (1)

where H0 is the free Klein-Gordon Hamiltonian, φ(x) is the Klein-Gordon field, and J(x) is the classical,
external source (a c-number scalar function). We found that, if the system is in the vacuum state before
the source is turned on, the source will create a mean number of particles

〈N〉 =

∫
d3p

(2π)3
1

2Ep
|J̃(p)|2 , (2)

where J̃ is the Fourier transform of J . In this problem we will verify that statement, and extract more
detailed information, by using a perturbative expansion in the strength of the source.

a) Show that the probability that the source creates no particles is given by

P (0) =

∣∣∣∣〈0|T{ exp

[
i

∫
d4xJ(x)φI(x)

]}
|0〉
∣∣∣∣2 . (3)

b) Evaluate the term in P (0) of order J2, and show that P (0) = 1− λ+O(J4), where λ = 〈N〉 equals
the expression given in Eq. (2).

c) Represent the term computed in b) as a Feynman diagram. Now represent the whole perturbation
series for P (0) in terms of Feynman diagrams. Show that this series exponentiates, so that it can be
summed exactly: P (0) = e−λ.
Hint : the term computed in b) can be represented as a propagator, and therefore the whole perturbation
series for P (0) can be written as an infinite sum over non-interacting propagators, with appropriate
symmetry factors.

d) Working at order J2, compute the probability that the source creates one particle of momentum
k. Then integrate this probability over k to show that the probability to create one particle with any
momentum is, at O(J2), P (1) = λ. Finally, using a representation similar to that employed in point c),
show that the all-orders expression of this probability is P (1) = λe−λ.

e) The all-orders results obtained above for n = 0 and n = 1 can be generalized to show that the
probability to create n particles is

P (n) =
λne−λ

n!
, (4)

i.e. it follows the Poisson distribution. Accepting this fact, prove the following properties of P (n):

∞∑
n=0

P (n) = 1 , 〈n〉 =
∞∑
n=0

nP (n) = λ . (5)
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The first property ensures that the P (n) are correctly normalized probabilities, while the second confirms
the interpretation of Eq. (2) as the mean number of particles created by the source J .

2 Applications of Wick’s Theorem

Working in the λφ4 theory,

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

(all expressions are in the interaction picture, φ(x) = φI(x)), use Wick’s theorem to evaluate the following
quantities:

a) 〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 ,
b) 〈0|T{φ(x1)φ(x2)

∫
d4x3

λ
4!
φ4(x3)}|0〉 ,

c) 〈0|T{φ4(x1)φ
4(x2)}|0〉 ,

by expressing them in terms of Feynman propagators. In each case, also draw the Feynman diagrams
representing the result.
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