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Sheet 4: Dilatation, Casimir effect and regulators (23.5.2017)

1 Casimir Effect

In this problem we will explore the Casimir effect1, which is a force between conducting plates that is
seemingly caused by the change in vacuum energy that results from the boundary conditions imposed
by the plates. Consider the modes of a free, massless, scalar field in one spatial dimension, confined to
a box of length L. We impose the boundary condition that φ(x) = 0 at x = 0 and x = L, so the allowed
terms in the Fourier expansion are sin(knx), where kn = nπ/L (with n = 1, 2, . . .). The vacuum energy
density will be infinite, as in three-dimensional field theories.

a) Introduce a cut-off factor replacing ωn → ωne
−ωn/ωC to render the vacuum energy finite (After

computing the relevant energy difference, we will be able to take the limit ωC → ∞). Show that the
zero-point energy inside the box is then

E0(L) =
1

2

∞∑
n=1

~ωne−ωn/ωC , with ωn = πn/L (1)

and that

E0(L) =
π

8L

1

sinh2( π
2ωCL

)
→ Lω2

C

2π
− π

24L
+O

(
1

ω2
C

)
. (2)

Hint : Use that
∑

n ne
−αn can be written as the derivative of a geometric series.

b) Now insert two hard-wall partitions in the box centered about the midpoint and separated by distance
a. Show that the total zero-point energy Etotal(a) becomes

Etotal(a) = E0(a) + 2E0( (L− a)/2 ). (3)

Calculate the force between the partitions using F = −∂Etotal(a)
∂a

. Show that in the limit ωC → ∞ and
L→∞, the force is

F = − ~cπ
24a2

. (4)

c) Repeat the calculation with a ζ-function regulator,

E0(L) =
1

2

∞∑
n=1

~ωn
(
ωn
µ

)−s
(5)

where we take s→ 0 (instead of ωC →∞). Do you get the same results?

Hint : Use
∑

n n
1−s = ζ(s− 1) = − 1

12
− 0.165 s+ . . . .

1It has been conclusively observed only very recently: S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
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d) Show the independence on the regulator2 using a generic function f(x),

E0(a) =
π

2

∞∑
n=1

n

a
f
( n

aΛ

)
. (6)

Show that this regulator will give the same Casimir force if

lim
x→∞

x
djf(x)

dxj
= 0, ∀j and f(0) = 1 . (7)

Show that the above regulators satisfy this criterium. Explain why the Casmir force is therefore an
infrared effect.

e*) Can you find a physical effect that would be equivalent to f(x) dying off at high energies (or
equivalent to the UV modes going right through the plates)? Think of an electro-magnetic field between
two metallic plates. When is the system then in the Casimir regime? How can the result for F (a) just
depend on fundamental constants ~, c and the distance a (and not on αem,me, . . . which it should if
it has to do with QED interactions)? Can we conclude that the concept of zero point fluctuations is a
heuristic and calculational aid in the description of the Casimir effect, but not a necessity?3

2 Dilatation transformations

A class of interesting theories are invariant under the scaling of all lengths by

xµ → (x′)µ = λxµ (8)

and

φ(x)→ φ′(x) = λ−Dφ(λ−1x) (9)

Here D is called the scaling dimension of the field. Consider the action for a real scalar field given by

S =

∫
d4x
(1

2
∂µφ∂

µφ− 1

2
m2φ2 − gφp

)
. (10)

a) Find the scaling dimension D such that the derivative terms remain invariant. For what values of m
and p is the scaling in Eqs. (8) and (9) a symmetry of the theory?

b) How do these conclusions change for a scalar field living in an (n+ 1)-dimensional spacetime instead
of a 3 + 1-dimensional spacetime?

c) In 3 + 1 dimensions, use Noether’s theorem to construct the conserved current Dµ associated to
scaling invariance.

2H.B.G. Casimir, Proc. Kon. Ned. Akad. Wetenschap B51, 793 (1948).
3See: R. L. Jaffe, The Casimir Effect and the Quantum Vacuum, Phys. Rev. D 72 021301 (2005).
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