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1 The Greisen-Zatsepin-Kuzmin (GZK) cutoff

In complete analogy to other composite objects, such as atoms or nuclei, protons can be excited
when bombarded with photons. The lowest excited state of the proton is called ∆+ and has a
mass m∆+ = 1232 MeV.

a) Consider a gas of photons at temperature T � mp . Assume for simplicity that all photons have an
energy equal to the average thermal energy and calculate the corresponding energy of a proton going
through that gas necessary to produce a ∆+.

b) The ∆+ eventually decays via ∆+ → pπ0, with mπ0 = 134 MeV. Calculate the average fraction of
the proton energy that is lost per collision as the proton goes through the photon gas.
Hint: You can assume that the decay of the ∆+ is isotropic in its rest frame.

c) The Universe is filled by a gas of photons, the cosmic microwave background (CMB), with temperature
T = 2.7 K. Protons propagating through the CMB undergo the above-mentioned process and lose energy.
As a consequence, above a certain energy the number of protons reaching the Earth drops dramatically.
Calculate this energy, which is known as the Greisen-Zatsepin-Kuzmin (GZK) cutoff.

2 Lorentz transformations

A Lorentz transformation xµ → x′µ = Λµ
νx

ν is such that it preserves the Minkowski metric
ηµν , meaning that ηµνx

µxν = ηµνx
′µx′ ν for all x.

a) Show that this implies that ηµν = ηστΛ
σ
µΛτ

ν . Then, use this result to show that an infinitesimal
transformation of the form Λµ

ν = δµν + ωµν is a Lorentz transformation when ωµν is antisymmetric, i.e.
ωµν = −ωνµ.

b) Write down the matrix form for ωµν that corresponds to a rotation by an infinitesimal angle θ about
the x3-axis. Do the same for a boost along the x1-axis by an infinitesimal velocity v.
Hint: See lecture notes.

c) Consider the infinitesimal form of the Lorentz transformation derived in a): xµ → xµ + ωµνx
ν . Show

that a scalar field transforms as

φ(x)→ φ′(x) = φ(x)− ωµνxν∂µφ(x) (1)

and hence show that the variation of the Lagrangian density is a total derivative,

δL = −∂µ(ωµνx
νL). (2)
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3 Functional derivative

For a functional F [φ] acting on a function φ(x), the functional derivative δF [φ]/δφ(x) is defined
via

F [φ+ η] = F [φ] +

∫
dx′

δF [φ]

δφ(x′)
η(x′) + . . .

where η(x) is an infinitesimal function, and the dots stand for terms of higher order in η. For example,
for the functional Fx[φ] = φ(x) one finds

δφ(x)

δφ(x′)
= δ(x− x′), (3)

and for the functional Q[φ] =
∫
dx(∂xφ(x))2 we have

δQ[φ]

δφ(x)
= −2∂2

xφ(x) , (4)

where we have assumed that the functions vanish sufficiently fast at the boundary, so that surface terms
vanish.

a) Derive from the definition above the product rule for the functional derivative,

δ(F [φ]G[φ])

δφ(x)
=
δF [φ]

δφ(x)
G[φ] + F [φ]

δG[φ]

δφ(x)
. (5)

b) Prove also the chain rule
δF [G[φ]]

δφ(x)
=

∫
dy
δF [G]

δG(y)

δG[φ]

δφ(x)
, (6)

where G : φ(x) → G(y) associates a function G(y) to a function φ(x): therefore, for fixed y, G is a
functional G[φ], and for fixed φ, G is a function G(y), for example

G(y) =

∫
dxK(x− y)φ(x) , F [G] =

∫
dy(G(y))2 . (7)

c) Show that the Euler-Lagrange equations are equivalent to the functional equations for the action

δS[φ]

δφ(x)
= 0 . (8)

d) Use functional derivatives to obtain the equation of motion for the field φ from

S =

∫
d4x
[
φ̇2(x)− aφ2(x)− bφ4(x)− c2(∇φ(x))2

]
. (9)

2


	The Greisen-Zatsepin-Kuzmin (GZK) cutoff
	Lorentz transformations
	Functional derivative

