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Sheet 11: Quantization of Dirac field, QED (18.7.2017)

1 Bosonic quantization of Dirac field

The purpose of this exercise is to verify that attempting to quantize the Dirac field as a boson leads to
irreparable problems. We start from the standard decomposition in the Schroedinger picture,

Ψ(x) =
2∑
s=1

∫
d3p

(2π)3
1√
2Ep

[
bspu

s(p)eip·x + cs†p v
s(p)e−ip·x

]
,

Ψ†(x) =
2∑
s=1

∫
d3p

(2π)3
1√
2Ep

[
bs†p u

s(p)†e−ip·x + cspv
s(p)†eip·x

]
, (1)

and postulate the commutation relations

[brp, b
s†
q ] = B(2π)3δrsδ(3)(p− q), [crp, c

s†
q ] = C(2π)3δrsδ(3)(p− q), (2)

where B and C are constants, while all other commutators vanish.

a) Find the values of B and C such that bosonic canonical commutation relations with πβ = iΨ†β are
satisfied, i.e.

[Ψα(x),Ψ†β(y)] = δαβδ
(3)(x− y) , [Ψα(x),Ψβ(y)] = [Ψ†α(x),Ψ†β(y)] = 0 , (3)

where α, β are indices that run over the spinor components.

b) Write down the Hamiltonian density H that corresponds to the Dirac Lagrangian L = iΨ̄γµ∂µΨ −
mΨ̄Ψ. Then, using the results of part a), show that after normal ordering the following expression is
obtained,

H =

∫
d3x H =

2∑
s=1

∫
d3p

(2π)3
Ep
(
bs†p b

s
p − cs†p csp

)
. (4)

Notice the minus sign in front of the second term. This Hamiltonian is not bounded below, since you
can lower the energy indefinitely by creating more and more c particles. This is one way to see that a
theory of bosonic spin-1/2 particles is ill-defined – a glimpse at the spin-statistics theorem.

2 e+e− → µ+µ− at lowest order in QED

Consider the QED Lagrangian describing the interactions of the electron and muon with the electroma-
gnetic field,

L =
∑
i= e, µ

ψ̄i(i /D −mi)ψi −
1

4
FµνF

µν , (5)

where Dµ = ∂µ − ieAµ and Fµν = ∂µAν − ∂νAµ. In this problem you will calculate the cross section for
e+e− → µ+µ− scattering at the lowest order in QED.
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a) Convince yourself that there is only one Feynman diagram that contributes to the amplitude at tree
level. Label p1 (p2) the four-momentum of the incoming electron (positron) and k1 (k2) the momentum
of the outgoing muon (antimuon). Using the following Feynman rules:

ieγµ (ψ̄Aµψ vertex),
−igµν

q2
(propagator of photon with momentum q), (6)

write down the amplitude iM(ee→ µµ). Then square it, obtaining

|M|2 =
e4

s2

(
v̄r(p2)γ

µus(p1)ū
s(p1)γ

νvr(p2)
)(
ūq(k1)γµv

p(k2)v̄
p(k2)γνu

q(k1)
)
, (7)

where s = (p1 + p2)
2 = (k1 + k2)

2 is one of the Mandelstam variables.

b) Now sum over the spin states of the final muons, and average over the spin states of the initial
electrons (explain why this corresponds to the scattering of unpolarized electrons). In practice, this
means you should compute 1

2

∑
s
1
2

∑
r

∑
q,p |M|

2, for which you should find (setting me = 0 henceforth)

|M|2 ≡ 1

4

∑
s,r,q,p

|M|2 =
e4

4s2
Tr
[
/p2γ

µ
/p1γ

ν
]
Tr
[
(/k1 +mµ)γµ(/k2 −mµ)γν

]
. (8)

c) By computing explicitly the traces, arrive at the expression

|M|2 =
8e4

s2
[
(p1 · k1)(p2 · k2) + (p1 · k2)(p2 · k1) +m2

µ(p1 · p2)
]
. (9)

Hint: you will find some of the identities derived in Ex. 3 of Sheet 10 useful.
Now specialize to the center of mass frame, and show that Eq. (9) can be expressed as

|M|2 = e4
[(

1 +
4m2

µ

s

)
+
(

1−
4m2

µ

s

)
cos2 θ

]
, (10)

where θ is the angle between the electron momentum ~p1 and the muon momentum ~k1.

d) Finally, calculate the differential scattering cross section(
dσ

dΩ

)
CoM

=
1

2Ee−2Ee+ |ve− − ve+|
|~k1|

(2π)24
√
s
|M|2 , (11)

where |ve− − ve+| is the relative velocity of the electron and positron. Express the RHS of this equation
as a function of the variables s and cos θ, then perform the integral in dΩ to obtain the total cross
section,

σ(ee→ µµ) =
4πα2

3s

√
1−

4m2
µ

s

(
1 +

2m2
µ

s

)
, (12)

where α ≡ e2/(4π) is the fine structure constant.
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