Relativity, Particles, Fields SS 2017

Prof. Andreas Weiler (TUM), Dr. Ennio Salvioni (TUM) https://www.t75.ph.tum.de/teaching/ss17-relativity-particles-fields/

Sheet 10: Dirac Equation, Gamma Matrices (11.7.2017)

1 Lorentz invariance of the Dirac Equation

Given a set of four $n \times n$ matrices γ^{μ} that satisfy

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \qquad (1)$$

we can write an n-dimensional representation of the Lorentz algebra,

$$S^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}] \,. \tag{2}$$

a) Show that the $S^{\mu\nu}$ indeed satisfy the commutation relations for the generators of the Lorentz group,

$$[S^{\mu\nu}, S^{\rho\sigma}] = i(g^{\nu\rho}S^{\mu\sigma} - g^{\mu\rho}S^{\nu\sigma} - g^{\nu\sigma}S^{\mu\rho} + g^{\mu\sigma}S^{\nu\rho}).$$
(3)

b) Given an infinitesimal Lorentz transformation $x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ with $\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}$, define $S(\Lambda) = \exp(-i\omega_{\mu\nu}S^{\mu\nu}/2)$. Then the Dirac spinors transform as $\psi'(x') = S(\Lambda)\psi(x)$. Show that

$$S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda) = \Lambda^{\mu}_{\ \nu}\gamma^{\nu}.$$
(4)

Then show that the Dirac equation $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$ is Lorentz invariant.

c) Define $\overline{\psi} \equiv \psi^{\dagger} \gamma^{0}$ and $\overline{M} \equiv \gamma^{0} M^{\dagger} \gamma^{0}$, with M an arbitrary 4×4 matrix. Prove that

$$\overline{M_1 M_2} = \overline{M_2 M_1},$$

$$(\overline{\psi}_1 M \psi_2)^* = \overline{\psi}_2 \overline{M} \psi_1,$$

$$\overline{\gamma^{\mu}} = \gamma^{\mu}.$$
(5)

Prove also that $\overline{S}(\Lambda) = \gamma^0 S^{\dagger}(\Lambda) \gamma^0 = S^{-1}(\Lambda)$, and use this result to find the transformation behavior of $\overline{\psi}(x) = \psi^{\dagger}(x)\gamma^0$.

2 Representations of Clifford algebra and Dirac Spinors

The Weyl or chiral representation of the Clifford algebra is given by

$$\gamma^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}.$$
 (6)

a) Show that the above matrices indeed satisfy $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$. Then find a unitary matrix U such that $(\gamma')^{\mu} = U\gamma^{\mu}U^{\dagger}$, where $(\gamma')^{\mu}$ form the Dirac representation of the Clifford algebra,

$$(\gamma')^0 = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \qquad (\gamma')^i = \begin{pmatrix} 0 & \sigma^i\\ -\sigma^i & 0 \end{pmatrix}.$$
 (7)

b) The plane-wave solutions of the Dirac equation are $\psi(x) = u^s(p)e^{-ix \cdot p}$ or $\psi(x) = v^s(p)e^{+ix \cdot p}$, where in the chiral representation

$$u^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \, \xi^{s} \\ \sqrt{p \cdot \overline{\sigma}} \, \xi^{s} \end{pmatrix}, \qquad v^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \, \eta^{s} \\ -\sqrt{p \cdot \overline{\sigma}} \, \eta^{s} \end{pmatrix}, \tag{8}$$

where $\sigma^{\mu} = (1, \vec{\sigma})$ and $\bar{\sigma}^{\mu} = (1, -\vec{\sigma})$, while ξ^s (s = 1, 2) is a basis of orthonormal two-component spinors, satisfying $(\xi^r)^{\dagger}\xi^s = \delta^{rs}$, and similarly for η^s . Show that

$$u^{r}(p)^{\dagger}u^{s}(p) = 2E_{p}\delta^{rs}, \qquad \bar{u}^{r}(p)u^{s}(p) = 2m\delta^{rs} v^{r}(p)^{\dagger}v^{s}(p) = 2E_{p}\delta^{rs}, \qquad \bar{v}^{r}(p)v^{s}(p) = -2m\delta^{rs},$$
(9)

while the orthonormality conditions are

$$\bar{u}^{s}(p)v^{r}(p) = 0, \qquad u^{s}(\mathbf{p})^{\dagger}v^{r}(-\mathbf{p}) = 0.$$
 (10)

c) Finally, show that

$$\sum_{s=1}^{2} u^{s}(p)\bar{u}^{s}(p) = \not p + m , \qquad \sum_{s=1}^{2} v^{s}(p)\bar{v}^{s}(p) = \not p - m .$$
(11)

3 Useful identities for gamma matrices

Using only the algebra in Eq. (1) (that is, without resorting to a particular representation), and defining the object $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$, prove the following results:

1.
$$\operatorname{Tr} \gamma^{\mu} = 0$$
,
2. $\operatorname{Tr} \gamma^{\mu} \gamma^{\nu} = 4 g^{\mu\nu}$,
3. $p_{1} p_{2} = 2p_{1} \cdot p_{2} - p_{2} p_{1}$,
4. $\gamma_{\mu} p \gamma^{\mu} = -2p$ and $\gamma_{\mu} p_{1} p_{2} \gamma^{\mu} = 4p_{1} \cdot p_{2}$,
5. $\operatorname{Tr}(p_{1} p_{2} p_{3} p_{4}) = 4 [(p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) - (p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + (p_{1} \cdot p_{4})(p_{2} \cdot p_{3})],$
6. $\operatorname{Tr}(p_{1} \dots p_{n}) = 0$ if n is odd,
b)
1. $(\gamma^{5})^{2} = 1$ and $\operatorname{Tr} \gamma^{5} = 0$,
2. $\operatorname{Tr}(\gamma^{5} p_{1} p_{2}) = 0$,

4.
$$\{\gamma^{\mu}, \gamma^{5}\} = 0$$
 and $[S^{\mu\nu}, \gamma^{5}] = 0$.

Hint: Some useful tricks include using the cyclicity of the trace, and inserting $(\gamma^5)^2 = 1$ into a trace.