1

Quantum Field Theory WS 2018/2019

Prof. Andreas Weiler (TUM); Dr. Patrick Vaudrevange, Dr. Ennio Salvioni, Dr. Javi Serra http://www.t75.ph.tum.de/teaching/ws18-quantum-field-theory/

Sheet 7: more on scattering and particle decay (05.12.2018; solution due by 12.12 at 16:00, the parts required for hand-in will be announced on 11.12 at 8:00am; discussed at tutorials of 12.12, 13.12 and 17.12)

1 Decay rate

In this problem we derive the relation between the S-matrix element and the observable decay rate of a particle.

a) Start from the transition rate for $\alpha \rightarrow \beta$,

$\frac{|\langle \psi_{\beta}^{\text{out}} | \psi_{\alpha}^{\text{in}} \rangle|^2}{T} \,, \tag{1}$

and show, by putting the system in a finite volume V, that it can be written as

$$V(2\pi)^4 \delta^{(4)}(p_\beta - p_\alpha) \prod_i \left(\frac{N_i}{2p_i^0(2\pi)^3}\right) \prod_j \left(\frac{N_j}{2p_j'^0(2\pi)^3}\right) |T_{\beta\alpha}|^2 , \qquad (2)$$

where N_p are normalization factors and $T_{\beta\alpha}$ is the *T*-matrix element in the conventional (continuum) normalization for the states.

b)*¹ Now we need to multiply Eq. (2) by $\sim d^3 p'_j$ for each final state particle, since we can only calculate the transition rate into final states that have momenta in a small interval around \vec{p}'_j . Using the completeness relation for the particle states, show that the correct factor is

$$dR_{\beta\alpha} = (\text{Equation } 2) \times \prod_{j} \frac{d^3 p'_j}{N_j}.$$
 (3)

c) Specialize to the case of a $1 \rightarrow n'$ transition, and show that in this case

$$dR_{\beta\alpha} = d\Gamma_{\beta\alpha} = \frac{1}{2p_i^0} |T_{\beta\alpha}|^2 d\Pi_{\text{LIPS}}^{(n')} , \qquad (4)$$

where p_i^0 is the energy of the decaying particle, and $d\Pi_{\text{LIPS}}^{(n')}$ is the Lorentz-invariant phase space for the n' final-state particles.

d)* Now consider two real scalar fields Φ, ϕ described by the Lagrangian $\mathcal{L}_{\text{free}} + \mathcal{L}_{\text{int}}^{i}$, where

$$\mathcal{L}_{\text{free}} = \frac{1}{2} (\partial_{\mu} \Phi \partial^{\mu} \Phi - M^2 \Phi^2 + \partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2)$$
(5)

and

$$\mathcal{L}_{\rm int}^1 = -\frac{\mu}{2} \Phi \phi \phi \,, \qquad \mathcal{L}_{\rm int}^2 = \frac{\Phi}{2f} \,\partial_\mu \phi \partial^\mu \phi \,. \tag{6}$$

Assuming M > 2m calculate the leading-order lifetime $\Gamma(\Phi \to \phi \phi)$, both in the case i = 1, where $|T_{\beta\alpha}|^2 = \mu^2$, and in the case i = 2, where $|T_{\beta\alpha}|^2 = (p_1 \cdot p_2)^2/f^2$, with $p_{1,2}$ the four-momenta of the final-state ϕ particles.

¹The * means to be handed in.

2^* 2 \rightarrow 2 scattering

This problem is devoted to the kinematics and differential cross sections of $2 \rightarrow 2$ scattering reactions. For a general scattering process of the type $a + b \rightarrow c + d$ one defines the Mandelstam variables as

$$s = (p_a + p_b)^2, \qquad t = (p_a - p_c)^2, \qquad u = (p_a - p_d)^2$$
 (7)

where p_i are the four-momenta of the particles, whose squared masses are denoted by m_i^2 .

a) Show that

$$s + t + u = \sum_{i=a,b,c,d} m_i^2$$
. (8)

b) Express the energies of the particles in the center-of-mass (cms) frame as functions of s and the particle masses. Show that for the momenta

$$|\vec{p}_{a}| = |\vec{p}_{b}| = \frac{\sqrt{\lambda(s, m_{a}^{2}, m_{b}^{2})}}{2\sqrt{s}}$$
(9)

(and similarly for $|\vec{p_c}|, |\vec{p_d}|$), where

$$\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2xy - 2xz - 2yz.$$
(10)

Show also that the flux factor $\sqrt{(p_a \cdot p_b)^2 - m_a^2 m_b^2}$ in the cross section formula equals $\sqrt{s} |\vec{p_a}|$.

c) Explain why, for fixed cms energy \sqrt{s} , the *T*-matrix element can be considered as a function of the single variable *t* (or alternatively, the scattering angle θ , where θ is the angle between $\vec{p_c}$ and $\vec{p_a}$ in the cms frame).

This result holds only for particles without spin, as assumed here. Explain why this result cannot be expected to be true in general. Under what conditions *does* it hold for particles with spin?

d) Assuming again that all particles are spin-less, express the differential cross sections $d\sigma/d\Omega$, $d\sigma/d\cos\theta$ and $d\sigma/dt$ in terms of kinematic factors and the T matrix elements ($d\Omega$ denotes the solid angle element). In the case of $d\sigma/dt$, what is the range of allowed values for t?