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Sheet 6: scattering, Lippmann-Schwinger, and particle decay
(28.11.2018; solution due by 05.12 at 16:00, the parts required for
hand-in will be announced on 04.12 at 8:00am; discussed at tutorials of
05.12, 06.12 and 10.12)

1 Scattering essentials

a) Prove the relation

p01p
0
2|~v1 − ~v2| =

√
(p1 · p2)2 −m2

1m
2
2 (1)

for the head-on collision of two particles with four-momenta p1,2, which is needed in the derivation of
the formula for the scattering cross section.

b)*1 Using the Lippmann-Schwinger equation, show that for a wave-packet state

eiH̃0te−iHt
∫
dαf(α)|ψin/out

α 〉 t→∓∞−→
∫
dαf(α)|φα〉 (2)

where |ψin/out
α 〉 are in- and out-states, and |φα〉 are free particle states (in the sense discussed in the

lecture, i.e. eigenstates of H̃0).

2 Scattering in quantum mechanics: Lippmann-Schwinger equation

In this problem we elucidate the relation of the scattering formalism developed in the course, to elemen-
tary scattering theory of a non-relativistic particle on a potential in single-particle quantum mechanics.
The Hamilton operator is given by

H =
~P 2

2m
+ V ( ~X) (3)

and the potential is assumed to have finite range, that is, |~x|V (~x)→ 0 for |~x| → ∞.

a) As a first step, define

G±(~x, ~x ′) ≡ 〈~x| 1

E~p − H̃0 ± iε
|~x ′〉 (4)

and prove that

G±(~x, ~x ′) = −m
2π

e±ip|~x−~x
′|

|~x− ~x ′|
(5)

where E~p = p2/(2m).

1The * means to be handed in.
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b)* Demonstrate, starting from the Lippmann-Schwinger equation in the position-space representation
of the states and using the result of part a), that the in- and out-states for the scattering of a particle
with momentum ~p have the asymptotic behavior

〈~x|ψin/out
~p 〉 = ei~p·~x + f±(~p ′, ~p )

e±ipr

r
+O

(
1

r2

)
(6)

where the scattering amplitudes are expressed in terms of the potential and the in- and out-wave
functions as

f±(~p ′, ~p ) = −m
2π

∫
d3x′e∓i~p

′·~x ′
V (~x ′)〈~x ′|ψin/out

~p 〉 = −m
2π
〈±~p ′|V |ψin/out

~p 〉 . (7)

Here r = |~x| and ~p ′ is defined as a vector in the direction of ~x with modulus equal to |~p |.
c)* Using the results of Problem 1 as well as of part b), establish the relation

S~pb~pa = 〈ψout
~pb
|ψin
~pa〉 = δ(3)(~pb − ~pa) + 2πi δ(Eb − Ea)

2π

m
f+(~pb, ~pa) (8)

between the S-matrix elements and the scattering amplitude. Here Ei ≡ ~p 2
i /(2m).

Hint: you will find the identity

lim
t→∞

ei(Eb−Ea)t

Eb − Ea − iε
= 2πi δ(Eb − Ea) (9)

useful. Prove it.

d)* Then prove the identities

dσ

dΩ
= |f+(~pb, ~pa)|2, σtot =

4π

|~pa|
Im f+(~pa, ~pa). (10)

The second relation for the total cross section is also known as the “optical theorem.”
Hint: To obtain the first of Eqs. (10), recall the quantum mechanics result

dσba
dΩ

=
(m

2π

)2
|Tba|2 (11)

where Tba is the transition rate. To derive the second of Eqs. (10), prove and employ the identity

Im
1

x± iε
= ∓ πδ(x). (12)

3 Two-body decay

Consider a spinless particle of mass M which decays into two particles of masses m1 and m2, respectively,
also with spin 0. Assume that the T -matrix element Tβα takes the same constant value λ irrespective
of the momenta of the particles. Compute the total decay width in the rest frame of the decaying
particle and express the result in terms of the masses. For such a decay to be kinematically possible,
M > m1 +m2 should hold. How does this condition arise in the calculation?
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4 Three-body decay [discussed at central tutorial of 05.12]

Consider the process of muon decay, µ− → e−ν̄eνµ. The amplitude squared, summed over the spin states
of the decay products and averaged over the spin states of the initial muon, is

|Afi|2 = 64G2
F (k1 · k′2)(k′1 · k′3), (13)

where GF is the Fermi constant, k1 is the four-momentum of the muon, and k′1,2,3 are the four-momenta
of the ν̄e, νµ and e−, respectively. In the rest frame of the muon, its decay rate is therefore

Γ =
32G2

F

m

∫
(k1 · k′2)(k′1 · k′3)dΠ3(k1), (14)

where

dΠn(k) ≡ (2π)4δ(4)
(
k −

n∑
j=1

k′j

) n∏
j=1

d3k′j
(2π)3

1

2Ek′j
, (15)

while kµ1 = (m,0) with m the muon mass. All the final state particles can be taken massless.
In this problem we will evaluate Γ through the following analysis:

a) Show that

Γ =
32G2

F

m

∫
d3k′3
(2π)3

1

2Ek′3
k1µk

′
3ν

∫
k′µ2 k

′ ν
1 dΠ2(k1 − k′3). (16)

b) Use Lorentz invariance to argue that∫
k′µ2 k

′ ν
1 dΠ2(q) = Aq2gµν +Bqµqν , (17)

where A and B are numerical constants.

c) Show that ∫
dΠ2(q) =

1

8π
. (18)

Then, by contracting both sides of Eq. (17) with gµν and qµqν and using Eq. (18), evaluate A and B.

d) Plug the results obtained in b) and c) into Eq. (16) and compute dΓ/dEe, where Ee ≡ Ek′3 is the
electron energy. Note that the maximum value of Ee is reached when the electron is emitted in one
direction, and the two neutrinos in the opposite direction. What is this maximum value?

e) Perform the integral over Ee to obtain the muon decay rate Γ. Using the measured values of the
lifetime of the muon, 2.197 µs, and of the muon mass, 105.66 MeV, determine the value of GF in
GeV−2.

f) Define the energy spectrum of the electron as P (Ee) ≡ Γ−1dΓ/dEe . Note that P (Ee)dEe is the
probability for the electron to be emitted with energy between Ee and Ee+dEe. Draw a graph of P (Ee)
versus Ee/m .
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5 [discussed at central tutorial of 05.12]

Let (H, U,Ω, φ,D) be a Wightman theory as in the lecture such that 〈Ω|φ(x)Ω〉 = 0. Suppose that the
Källén-Lehmann representation has the form

〈Ω|φ(x)φ(y)Ω〉 =

∫
dρ(M2)∆+(x− y;M2), (19)

dρ(M2) = Zδ(M2 −m2)d(M2) + dρ̃(M2), (20)

where Z > 0 and m > 0 are fixed and dρ̃ is supported in [m̃2,∞) for some m̃ > m. Let h ∈ S be such

that ĥ is supported near the mass hyperboloid Hm. Show that

(�x +m2)φ(hx)Ω = 0. (21)

Hints:

1) The solution does not have to be completely rigorous. You can exchange the order of various
mathematical operations without justification.

2) For the definition of the Schwartz class of test-functions S, see the notes of Math Lecture 1.

Some relevant definitions:

1. In this problem we use notation which is common in the mathematical literature, namely a vector
in Hilbert space is denoted Ψ and not |Ψ〉. For a scalar product of two vectors Ψ1, Ψ2 we write
〈Ψ1|Ψ2〉 which coincides with the physics notation. However, given a linear operator A, the scalar
product of Ψ1 and AΨ2 has the form 〈Ψ1|AΨ2〉 and not 〈Ψ1|A|Ψ2〉.

2. ∆+(x− y;M2) =
∫

d3p
(2π)32p0

e−ip(x−y) with p0 =
√
~p 2 +M2.

3. ĥ(q) = 1
2π

∫
d4qeiqxh(x) with qx = q0x0 − ~q · ~x.

4. Hm = {p ∈ R4|p2 = m2, p0 ≥ 0}.

5. “Near the mass hyperboloid Hm” means here in the set

Mε = {q ∈ R4| |q2 −m2| < ε, q0 ≥ 0}, (22)

for some ε > 0 much smaller than (m̃2 −m2).

6. hx(y) = h(x− y).
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