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1 Properties of gamma matrices

Prove the following identities, using only the definining property {7*,+"} = 2¢*” and the definitions

v = 72y = (—i/4) €y Py and o = (i/2)[y*, 7], i.e. without resorting to a particular

representation:
a)
1 Ay, =4
2.yt = =297 and PPt =467,
3 WP = =290
4. y,0"PyH =0,
5. Try* =0,
6. Tr(y#~Y) =4 g™,
7. F L Tr(yiya ) = 49" g7 — g9 + 9" g""),
8. * Tr(+*...~47) =0 for an odd number of v matrices;
b)
1. (75)?=1and Trvys =0,
2. {v*,%} =0 and [0",7;5] =0,
3. Tr(ysv*y") =0,
4. Tr(ysyHayryP~7) = —4i etro |
5. * 5ot = %6*“”“0,,0 ,
6. * yHyyP = gvoat — ghaY 4 gy + ey

Hint: Some useful tricks include exploiting the cyclicity of the trace, inserting (v5)> = 1 into a trace,
and using the identity €,g,5¢""7 = —5{; 35 68 63, -

I1The * means to be handed in.
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2*  Weyl spinors

Given the generators of rotations J¢ = (1/2)e¥* J7* and boosts K = J, where i, j, k = 1,2, 3, infinite-
simal Lorentz transformations can be written as

v—>1—-i0-J+in-K)y. (1)

Recall from the lecture the definition of the complexified Lorentz generators A = (J +iK)/2 and B =
(J —iK)/2, which separately fulfill the commutation relations of angular momentum and commute with
each other. Any finite irreducible representation generated by A is locally isomorphic to a representation
generated by a usual angular momentum, i.e. locally isomorphic to a representation of SU(2); similarly
for B. Therefore all finite-dimensional representations of the Lorentz group correspond to pairs (b, a) of
integers or half-integers.

Note: Since the A, B are non-hermitian, A" = B, the global structure of the representations is however a
non-unitary analytic continuation of the corresponding SU(2) representations. A, B generate the group
Spin(1,3) = SL(2,C), which is in turn the (universal) double cover of the proper orthochronous Lorentz
group SO(1,3).

a) Now consider the simplest non-trivial representations. Those are the left- and right-handed Weyl
spinors (3, 0) and (0, 5). Use the fact that spin-1/2 representations of angular momentum are generated
by o /2 to show that the Weyl spinors transform as

Yp = Dp(A)yr = (1 — (10 +n) - %) Yr,
Yr — Dp(A)p = (1 — (10 —mn) - %) VR (2)

Use 6* = —o?00? and the explicit form of Dy g(A) to show that 2D (A)*0? = Dgr(A). Show how one
can infer from this that if ¢, € (3,0), then 0¢} is a right-handed Weyl spinor, i.c. 0?9} € (0, 3).

b) Based on the results of the previous point, show that two distinct types of fermion masses can be
written compatibly with Lorentz invariance,

,CD = mesz + h.C., LM = megZ'O'%/}L + h.C., (3)

where for the second (Majorana) type, an analogous term could be written for 1z . What does each of
the two terms in Eq. (3) imply, as far as internal symmetries are concerned? Finally, what happens to
Ly if the components of ¢, commute with each other? As you will see later in the lecture, this apparent
puzzle is resolved by treating the spinors as anticommuting (Grassmann) variables.

c) Prove that if ¢ and g are right-handed Weyl spinors and o* = (1, o), then U* = 6}%0“@03 is a
Lorentz four-vector. Show the same for V* = {26“1/@, where v, and &, are left-handed Weyl spinors
and o = (1, —0o).

d) Verify explicitly that for Dy (A) = exp(—ifn - o/2), L[D(A)] is a rotation by the angle # around
n, where L follows from V# — V'# = L* V¥ Finally, show also that for D(A) = exp(—nn - o/2),
L[Dr(A)] is a boost of rapidity 7 (i.e. with boost parameters 8 = tanh 7,y = coshn) in the direction n.
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