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1 Properties of gamma matrices

Prove the following identities, using only the definining property {γµ, γν} = 2 gµν and the definitions
γ5 ≡ iγ0γ1γ2γ3 = (−i/4!)εµνρσγ

µγνγργσ and σµν ≡ (i/2)[γµ, γν ], i.e. without resorting to a particular
representation:

a)

1. γµγµ = 4

2. γµ γ
ν γµ = −2γν and γµ γ

νγργµ = 4 gνρ ,

3. γµ γ
νγργσγµ = −2 γσγργν ,

4. γµσ
νργµ = 0 ,

5. Tr γµ = 0 ,

6. Tr(γµγν) = 4 gµν ,

7. * 1 Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ),

8. * Tr(γµ . . . γσ) = 0 for an odd number of γ matrices;

b)

1. (γ5)
2 = 1 and Tr γ5 = 0 ,

2. {γµ, γ5} = 0 and [σµν , γ5] = 0 ,

3. Tr(γ5γ
µγν) = 0 ,

4. Tr(γ5γ
µγνγργσ) = −4i εµνρσ ,

5. * γ5σ
µν = i

2
εµνρσσρσ ,

6. * γµγνγρ = gνργµ − gµργν + gµνγρ + iεµνρσγσγ5 .

Hint: Some useful tricks include exploiting the cyclicity of the trace, inserting (γ5)
2 = 1 into a trace,

and using the identity εαβγδε
µνρσ = −δµ[αδνβ δργ δσδ] .

1The * means to be handed in.
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2* Weyl spinors

Given the generators of rotations J i = (1/2)εijkJ jk and boosts Ki = J i0, where i, j, k = 1, 2, 3, infinite-
simal Lorentz transformations can be written as

ψ → (1− iθ · J + iη ·K)ψ . (1)

Recall from the lecture the definition of the complexified Lorentz generators A = (J + iK)/2 and B =
(J−iK)/2, which separately fulfill the commutation relations of angular momentum and commute with
each other. Any finite irreducible representation generated byA is locally isomorphic to a representation
generated by a usual angular momentum, i.e. locally isomorphic to a representation of SU(2); similarly
for B. Therefore all finite-dimensional representations of the Lorentz group correspond to pairs (b, a) of
integers or half-integers.

Note: Since theA,B are non-hermitian,A† = B, the global structure of the representations is however a
non-unitary analytic continuation of the corresponding SU(2) representations. A,B generate the group
Spin(1, 3) ∼= SL(2,C), which is in turn the (universal) double cover of the proper orthochronous Lorentz
group SO(1, 3).

a) Now consider the simplest non-trivial representations. Those are the left- and right-handed Weyl
spinors (1

2
, 0) and (0, 1

2
). Use the fact that spin-1/2 representations of angular momentum are generated

by σ/2 to show that the Weyl spinors transform as

ψL → DL(Λ)ψL =
(
1− (iθ + η) · σ

2

)
ψL ,

ψR → DR(Λ)ψR =
(
1− (iθ − η) · σ

2

)
ψR . (2)

Use σ∗ = −σ2σσ2 and the explicit form of DL,R(Λ) to show that σ2DL(Λ)∗σ2 = DR(Λ) . Show how one
can infer from this that if ψL ∈ (1

2
, 0), then σ2ψ∗L is a right-handed Weyl spinor, i.e. σ2ψ∗L ∈ (0, 1

2
).

b) Based on the results of the previous point, show that two distinct types of fermion masses can be
written compatibly with Lorentz invariance,

LD = mDψ
†
LψR + h.c., LM = mMψ

T
L iσ

2ψL + h.c., (3)

where for the second (Majorana) type, an analogous term could be written for ψR . What does each of
the two terms in Eq. (3) imply, as far as internal symmetries are concerned? Finally, what happens to
LM if the components of ψL commute with each other? As you will see later in the lecture, this apparent
puzzle is resolved by treating the spinors as anticommuting (Grassmann) variables.

c) Prove that if ψR and ξR are right-handed Weyl spinors and σµ ≡ (1,σ), then Uµ = ξ†Rσ
µψR is a

Lorentz four-vector. Show the same for V µ = ξ†Lσ̄
µψL, where ψL and ξL are left-handed Weyl spinors

and σ̄µ ≡ (1,−σ).

d) Verify explicitly that for DL(Λ) = exp(−iθn · σ/2), L[DL(Λ)] is a rotation by the angle θ around
n, where L follows from V µ → V ′µ = LµνV

ν . Finally, show also that for DL(Λ) = exp(−ηn · σ/2),
L[DL(Λ)] is a boost of rapidity η (i.e. with boost parameters β = tanh η, γ = cosh η) in the direction n.
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