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Sheet 11: Lie groups, Poincaré group, spin
(16.01.2019; solution due by 23.01.2019 at 16:00, the parts required
for hand-in will be announced on 22.01.2019 at 8:00am; discussed at
tutorials of 23.01, 24.01 and 28.01)

1 SU(2) and SO(3) groups [discussed at central tutorial of 23.01]

a) Show that the space of SO(3) rotation matrices is isomorphic to the solid ball of radius π in three
dimensions with antipodal points identified.
Hence conclude that 2π rotations around any axis ~n cannot be connected to the identity by a path,
which can be contracted to a point. The (first) homotopy group is loosely defined as the group
whose elements are the equivalence classes of paths that can be continuously deformed into each
other. Explain why the homotopy group of SO(3) is Z2 . This is the reason why the rotation group
allows for projective representations up to a sign. It is also the reason why there are fundamentally
two types of particles, bosons and fermions.

b) Show that the universal covering group SU(2) of SO(3) is isomorphic to the surface of the sphere
in four dimensions. What is its homotopy group?

c) Repeat the analysis of part a) for rotations in two space dimensions. What are the possible impli-
cations of your findings for spin and statistics (bosons vs. fermions) in two dimensions?

2 Lie groups [discussed at central tutorial of 23.01]

Let G be a Lie group and U some neighbourhood of e in G. We work in a chart η : U → O ⊂ Rn

in which the group elements have the form g = η−1(ε1, . . . , εn), e = η−1(0, . . . , 0). For ε1, ε2 ∈ O,
i.e. εi = (ε1i , . . . , ε

n
i ), i = 1, 2, we define the multiplication function

m(ε1, ε2) := η(η−1(ε1)η
−1(ε2)) (1)

which takes values in O, i.e. m(ε1, ε2) = (m1(ε1, ε2), . . .m
n(ε1, ε2)). As shown in the lecture, the Lie

algebra G′ of G is spanned by the vector fields

XA
η−1(ε)(f) =

n∑
`1=1

∂m`1

∂εA2
(ε, 0)

∂f ◦ η−1

∂ε`1
(ε) , f ∈ C∞(G) . (2)

Show that

[XA, XB]e(f) =
n∑

C=1

fCABXC
e (f) (3)

with

fCAB :=
∂2mC

∂εA1 ∂ε
B
2

(0, 0)− ∂2mC

∂εB1 ∂ε
A
2

(0, 0). (4)
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Hints:

1) You can use that ∂mi

∂εj1
(0, 0) = ∂mi

∂εj2
(0, 0) = δij.

2) The notation ∂mi

∂εj1
(0, 0) etc. means you should first differentiate the function εj1 → mi(0, . . . , εj1, . . . , 0)

and only later set εj1 = 0.

3) XA
η−1(ε) means the vector field XA evaluated at η−1(ε) ∈ G.

4) Note the notational collision f ∈ C∞(G) and fCAB. These are unrelated objects.

3 Poincaré group

In the Poincaré groups, spacetime translations are added to the set of (homogeneous) Lorentz transfor-
mations,

xµ → Λµ
ν x

ν + aµ , aµ ∈ R4 , (5)

where Λ is an element of the Lorentz group connected to the identity.

a)* 1 Prove the relations

U(Λ, a)JµνU−1(Λ, a) = Λµ
ρΛ

ν
σ (Jρσ − aρP σ + aσP ρ) (6)

U(Λ, a)P µU−1(Λ, a) = Λµ
ρP

ρ , (7)

for the generators of the Poincaré algebra, Jµν of rotations and boosts and P µ of translations.

b)* From the previous result, derive the commutation relations of the generators Jµν , P µ, and of Jµν

with P µ.

c)* Prove the relations

UTJ
µνU−1T = −T µρT νσJρσ (8)

UTP
µU−1T = −T µρP ρ , (9)

for the transformation of the generators of the Poincaré algebra under time reversal. Here T =
diag(−1, 1, 1, 1) is the time reversal transformation and UT its anti-unitary representation on the
Hilbert space.

d) Consider P 2 = P µPµ and W 2 = WµW
µ, where Wµ ≡ (1/2)εµνσρP

νJσρ is the Pauli-Lubanski
polarization vector. Using the commutation relations for the generators of the Poincaré group,
show that P 2 and W 2 are Casimir operators for this algebra, i.e. they commute with both Jµν and
P µ.

1The * means to be handed in.

2



e)* Since the Poincaré group has rank 2, P 2 and W 2 are its only Casimir operators. Therefore a massive
state can be labelled by two numbers, its mass and spin. Show that for a massless particle, P µ

and W µ must be proportional to each other, and use this to conclude that a massless state can be
labeled by only one number (called helicity).

f) Show that J2 = JµνJµν is a Casimir of the Lorentz group, but it is not a Casimir of the Poincaré
group.

4* Little group

An observer O sees a particle of mass m and spin j = 1/2 in the state |p, s〉 with momentum pµ =
(
√
m2 + p2, 0, p, 0) in the y-direction, where s refers to the z-component of the spin. Another observer

O′ moves relative to O with velocity v in the z-direction. Which state does O′ see?

Instructions: determine the Wigner rotation W (Λ, p) and the corresponding Wigner function D
1
2 (W )

associated with p and the Lorentz transformation Λ which connect the frames of O and O′. Use the
following form of the standard boost

L(p)µν =

(
p0
m

pj

m
pi

m
δij +

(
p0
m
− 1
)
pipj

~p 2

)
, (10)

where pi denotes the 3-momentum components. (Pay attention to the upper and lower index positions,
which imply different signs.)

5* Poincaré group in three space-time dimensions

a) How do the commutation relations of the Poincaré algebra depend on the number of space-time
dimensions? Identify the boost and rotation generators in three space-time dimensions. How many
of each are there? What are the invariant (Casimir) operators in three space-time dimensions?

b) What is the little group for the massive and massless representations of the Poincaré group in
three space-time dimensions?
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