1

Quantum Field Theory WS 2018/2019

Prof. Andreas Weiler (TUM); Dr. Patrick Vaudrevange, Dr. Ennio Salvioni, Dr. Javi Serra http://www.t75.ph.tum.de/teaching/ws18-quantum-field-theory/

Sheet 10: beta function, RGEs, EFT

(09.01.2019; solution due by 16.01.2019 at 16:00, the parts required for hand-in will be announced on 15.01.2019 at 8:00am; discussed at tutorials of 16.01, 17.01 and 21.01)

1^{*1} Beta function

In dimensional regularization the $\overline{\text{MS}}$ coupling renormalization constant has the expansion

$$Z_{\lambda} = 1 + \sum_{n=1}^{\infty} \lambda^n \sum_{k=1}^n \frac{z_{nk}}{\epsilon^k} , \qquad (1)$$

where $\lambda = \lambda(\mu)$ refers to the renormalized coupling. Prove

- a) that the *d*-dimensional beta-function can at most be linear in ϵ ,
- b) that the *n*-loop coefficient β_{n-1} of the four-dimensional beta function,

$$\beta(\lambda) = \sum_{n=1}^{\infty} \beta_{n-1} \lambda^{n+1} , \qquad (2)$$

is determined from the single pole term z_{n1} , and

c) that z_{nn} can be expressed in terms of z_{11} .

2 RGEs for two scalar fields in ϕ^4 theory

Consider a theory of two massive real scalars ϕ_1 and ϕ_2 (with standard kinetic terms) and potential

$$V(\phi_1, \phi_2) = \frac{1}{24}\lambda_1\phi_1^4 + \frac{1}{24}\lambda_2\phi_2^4 + \frac{1}{4}\lambda_0\phi_1^2\phi_2^2 , \qquad (3)$$

see the discussion starting on page 168 in the lecture notes. Hence, $V(\phi_1, \phi_2)$ has three couplings λ_0, λ_1 and λ_2 . (We ignore mass renormalization.)

a)* Write down all one-loop Feynman diagrams that contribute to the beta functions of λ_0 , λ_1 and λ_2 in the $\overline{\text{MS}}$ scheme, and calculate these beta functions. You should find

$$\beta_{\lambda_0} = -\epsilon \lambda_0 + \frac{1}{32\pi^2} (\lambda_1 + \lambda_2) \lambda_0 + \frac{4}{32\pi^2} \lambda_0^2 , \qquad (4a)$$

$$\beta_{\lambda_1} = -\epsilon \lambda_1 + \frac{3}{32\pi^2} (\lambda_1^2 + \lambda_0^2) , \qquad (4b)$$

$$\beta_{\lambda_2} = -\epsilon \lambda_2 + \frac{3}{32\pi^2} (\lambda_2^2 + \lambda_0^2) . \qquad (4c)$$

Hint: use the results form the lecture whenever possible (i.e. see page 188 in the lecture notes).

¹The ***** means to be handed in.

- b) Solve the RGEs associated to Eqs. (4) numerically.
- c)* Identify the non-trivial fixed points of the RGE running and interpret them (thinking of additional symmetries).
- d) Set $\lambda_2 = 0$ at the UV and see that it is generated by the RGE running from the UV to the IR.

3* EFT example

Consider the example of one light, charged scalar ϕ and a heavy real scalar S (see the lecture notes on page 180), i.e.

$$\mathcal{L} = \partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi - m^{2}\phi^{\dagger}\phi + \frac{1}{2}\partial_{\mu}S\partial^{\mu}S - \frac{1}{2}M^{2}S^{2} - \frac{k_{3}}{3!}S^{3} - gS\phi^{\dagger}\phi , \qquad (5)$$

with $m^2 \ll M^2$ and $k_3, g \sim O(M)$. We go to the effective field theory (EFT) of the light field ϕ at low energies (i.e. at energies $E \ll M$) by taking $p_i \cdot p_j \ll M^2$ for all four-momenta p_i in all interactions. Compute the coefficients λ_4 , λ_6 and c_4 in the EFT Lagrangian of ϕ ,

$$\mathcal{L}_{\text{eff}} = \partial_{\mu}\phi^{\dagger}\partial^{\mu}\phi - m^{2}\phi^{\dagger}\phi - \frac{\lambda_{4}}{4}\left(\phi^{\dagger}\phi\right)^{2} - \frac{\lambda_{6}}{8M^{2}}\left(\phi^{\dagger}\phi\right)^{3} + \frac{c_{4}}{M^{2}}\partial_{\mu}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi) , \qquad (6)$$

using

- a) the tree-level diagrams of the interactions $\phi\phi \rightarrow \phi\phi$ and $\phi\phi \rightarrow \phi\phi \phi^{\dagger}\phi$ (compare also to Exercise 1 on Sheet 8), and
- b) the equations of motion, i.e. use the equation of motion of the heavy field S from the Lagrangian Eq. (5) to express S in terms of the light field ϕ . Plug this expression back into the Lagrangian Eq. (5) and compare the result to the diagrammatic method.