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Sheet 10: beta function, RGEs, EFT

(09.01.2019; solution due by 16.01.2019 at 16:00, the parts required
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tutorials of 16.01, 17.01 and 21.01)

1*!  Beta function

In dimensional regularization the MS coupling renormalization constant has the expansion
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where A\ = A(u) refers to the renormalized coupling. Prove

a) that the d-dimensional beta-function can at most be linear in ¢,

b) that the n-loop coefficient 3,_; of the four-dimensional beta function,
B = > Baa A", 2)
n=1

is determined from the single pole term z,;, and

c¢) that z,, can be expressed in terms of z1;.

2 RGEs for two scalar fields in ¢* theory

Consider a theory of two massive real scalars ¢; and ¢ (with standard kinetic terms) and potential
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see the discussion starting on page 168 in the lecture notes. Hence, V (¢, ¢2) has three couplings Ao, Ay
and Ay. (We ignore mass renormalization.)

a)* Write down all one-loop Feynman diagrams that contribute to the beta functions of A\g, A\ and A
in the MS scheme, and calculate these beta functions. You should find
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Hint: use the results form the lecture whenever possible (i.e. see page 188 in the lecture notes).

I1The * means to be handed in.
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b) Solve the RGEs associated to Egs. (4) numerically.

¢)* Identify the non-trivial fixed points of the RGE running and interpret them (thinking of additional
symmetries).

d) Set Ay =0 at the UV and see that it is generated by the RGE running from the UV to the IR.

3* EFT example

Consider the example of one light, charged scalar ¢ and a heavy real scalar S (see the lecture notes on
page 180), i.e.
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with m? < M? and k3, g ~ O(M). We go to the effective field theory (EFT) of the light field ¢ at low
energies (i.e. at energies F < M) by taking p; - p; < M? for all four-momenta p; in all interactions.
Compute the coefficients \y, Ag and ¢4 in the EFT Lagrangian of ¢,
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using

a) the tree-level diagrams of the interactions ¢¢ — ¢¢ and ¢ — ¢p ¢'¢ (compare also to Exercise
1 on Sheet 8), and

b) the equations of motion, i.e. use the equation of motion of the heavy field S from the Lagrangian
Eq. (5) to express S in terms of the light field ¢. Plug this expression back into the Lagrangian
Eq. (5) and compare the result to the diagrammatic method.



