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1 Functional derivative

For a functional F (φ) acting on a function φ(x), the functional derivative δF [φ]/δφ(x) is defined via

F [φ+ η] = F [φ] +

∫
dx′

δF [φ]

δφ(x′)
η(x′) + . . .

where η(x) is an infinitesimal function, and the dots stand for terms of higher order in η. In particular,
for the functional F [φ] = φ(x),

δφ(x)

δφ(x′)
= δ(x− x′).

a) Derive from the definition above the product rule for the functional derivative,

δ(F [φ]G[φ])

δφ(x)
=
δF [φ]

δφ(x)
G[φ] + F [φ]

δG[φ]

δφ(x)
. (1)

b) Prove also the chain rule
δF [G[φ]]

δφ(x)
=

∫
dy
δF [G]

δG(y)

δG[φ]

δφ(x)
, (2)

where G : φ(x) → G(y) associates a function G(y) to a function φ(x): therefore, for fixed y, G is a
functional G[φ], and for fixed φ, G is a function G(y), for example

G(y) =

∫
dxK(x− y)φ(x) , F [G] =

∫
dy(G(y))2 . (3)

c) Show that the Euler-Lagrange equations are equivalent to the functional equations for the action

δS[φn]

δφn(x)
= 0 with φn = φ, ∂µφ, . . . . (4)

d) Use functional derivatives to obtain the equation of motion for the field φ from

S =

∫
d4x
[
φ̇2(x)− aφ2(x)− bφ4(x)− c2(∇φ(x))2

]
, (5)

where a, b, c are constants.

e) Repeat the previous point after replacing the quantity in square parentheses with

1

2
∂µφ ∂

µφ+ λφ2(∂µφ)4 (6)

where λ is a constant. What is its mass dimension?
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2 Fock space

An N -particle momentum eigenstate is defined as

|p1 . . . pN〉 =

(∏
i

1√
ni(p)!

)
a†(p1) . . . a

†(pN)|Ω〉 (7)

where ni(p) denotes the number of occurrences of p in the set {p1, . . . pN} and the product runs over all
distinct values of p in this set. The union of all momentum eigenstates for any N defines a basis of the
Fock space, on which a real scalar quantum field acts.

a) Prove that

a†(p)|p1 . . . pN〉 =
√
n(p) + 1 |pp1 . . . pN〉 (8)

a(p)|p1 . . . pN〉 =
1√
n(p)

N∑
n=1

(2π)32Epδ
(3)(~p− ~pn)|p1 . . . pn−1pn+1 . . . pN〉 (9)

where the last expression should be interpreted as zero, if p does not coincide with any of the pn .

b) Show that the state has total momentum p1 + · · ·+ pN .

c) Show that the state is totally symmetric under the interchange of any two momentum labels.

d) Construct explicitly the single-particle momentum eigenstate wave function ψ(t, ~x) = 〈Ω|φ|p〉. Verify
that |~x, t〉 ≡ φ(t, ~x)|Ω〉 can be interpreted as an eigenstate of the position operator for a quantum-
mechanical system of a single particle in the Schrödinger picture.
Compute the wave-function ψ(t, ~x, ~y) = 〈~x~y; t|p1p2〉 of a two-particle momentum eigenstate.

e) Prove the identity

〈p′1 . . . p′N |p1 . . . pN〉 =

(∏
i

1√
ni(p)!

)[
N∏
n=1

(2π)32Epnδ
(3)( ~p′n − ~pn) + permutations

]
. (10)
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