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1 Functional derivative

For a functional F(¢) acting on a function ¢(x), the functional derivative §F'[¢|/d¢(x) is defined via
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where 7(z) is an infinitesimal function, and the dots stand for terms of higher order in 7. In particular,
for the functional F[¢] = ¢(x),
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a) Derive from the definition above the product rule for the functional derivative,
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b) Prove also the chain rule
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where G : ¢(z) — G(y) associates a function G(y) to a function ¢(z): therefore, for fixed y, G is a
functional G[¢], and for fixed ¢, G is a function G(y), for example
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c¢) Show that the Euler-Lagrange equations are equivalent to the functional equations for the action
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d) Use functional derivatives to obtain the equation of motion for the field ¢ from
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where a, b, ¢ are constants.

e) Repeat the previous point after replacing the quantity in square parentheses with
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where A is a constant. What is its mass dimension?
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2 Fock space

An N-particle momentum eigenstate is defined as
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where n;(p) denotes the number of occurrences of p in the set {p1,...px} and the product runs over all
distinct values of p in this set. The union of all momentum eigenstates for any N defines a basis of the
Fock space, on which a real scalar quantum field acts.

a) Prove that
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where the last expression should be interpreted as zero, if p does not coincide with any of the p, .

b) Show that the state has total momentum p; + - - - + py.
c) Show that the state is totally symmetric under the interchange of any two momentum labels.

d) Construct explicitly the single-particle momentum eigenstate wave function ¢ (¢, Z) = (Q|¢|p). Verify
that |Z,t) = ¢(t,7)|Q2) can be interpreted as an eigenstate of the position operator for a quantum-
mechanical system of a single particle in the Schrédinger picture.

Compute the wave-function ¢ (¢, ¥, i) = (Zy; t|p1ps) of a two-particle momentum eigenstate.

e) Prove the identity
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