Advanced Quantum Field Theory SS 2019

Prof. Andreas Weiler (TUM); Dr. Ennio Salvioni, Dr. Javi Serra https://www.t75.ph.tum.de/teaching/ss19-quantum-field-theory-ii/

Sheet 1: Non-abelian gauge invariance (10.05.2019)

1 Geometrical origin of the Abelian field strength

Consider the comparator U(y, x), a scalar quantity that depends on two spacetime points x and y and transforms as $U(y, x) \to e^{i\alpha(y)}U(y, x)e^{-i\alpha(x)}$ under a local U(1) transformation acting on matter fields as $\psi(x) \to e^{i\alpha(x)}\psi(x)$. In this picture the gauge vector field is identified with the connection $A_{\mu}(x)$. Here we use U(y, x) to derive geometrically the form of the locally invariant kinetic term for A_{μ} .

a) Assuming that the comparator is a pure phase, i.e. $U(y, x) = e^{i\phi(y,x)}$, and that in addition it satisfies $[U(x,y)]^{\dagger} = U(y,x)$, show that

$$U(x + \epsilon n, x) = \exp\left[-ie\epsilon n^{\mu}A_{\mu}(x + \frac{\epsilon}{2}n) + O(\epsilon^{3})\right]$$
(1)

for small ϵ , where n^{μ} is an arbitrary vector and the constant e was extracted arbitrarily.

b) Define U(x) as the product of the four comparators calculated along the following loop



where $\hat{1}, \hat{2}$ are the unit vectors in the (1, 2) plane. Prove that $\mathbf{U}(x)$ is invariant under local transformations. Then, using the result in **a**), show that

$$\mathbf{U}(x) = 1 - ie\epsilon^2 \left[\partial_1 A_2(x) - \partial_2 A_1(x)\right] + O(\epsilon^3).$$
(2)

Conclude that the object

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{3}$$

is locally invariant, and therefore suited to construct the kinetic term for the vector field.

2 Adjoint representation and gauge transformations

a) Consider a Lie algebra

$$[T^a, T^b] = i f^{abc} T^c, \qquad a, b, c = 1, \dots, k$$
(4)

where the f^{abc} are totally antisymmetric real coefficients. The f^{abc} can be regarded as $k \ (k \times k)$ matrices, $(\mathbf{f}^a)_{bc} = q f^{abc}$ where q is a purely imaginary number. Using the Jacobi identity show that these $k \times k$ matrices obey, for an appropriate choice of q, the same Lie algebra as the T^a .

b) Show that if ω transforms in the adjoint representation of SU(N), its covariant derivative is given by $\mathbf{D}_{\mu}\omega = \partial_{\mu}\omega + i[\mathbf{A}_{\mu},\omega]$ where \mathbf{A}_{μ} is the matrix of gauge fields, and transforms in the same way as ω . **c)** Show from the gauge transformation properties of \mathbf{A}_{μ} that the field strength $\mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + i[\mathbf{A}_{\mu},\mathbf{A}_{\nu}]$ does indeed transform as the adjoint of SU(N).

3 Winding number

Consider a map from $S^1 \to S^1$. Given a smooth map $U(\phi)$, its winding number can be written as

$$n = \frac{i}{2\pi} \int_0^{2\pi} d\phi \, U \partial_\phi U^\dagger. \tag{5}$$

a) Show that e.g. $U(\phi) = e^{in\phi}$ has winding number n.

b) Assuming that $UU^{\dagger} = 1$ (as for gauge transformations), we will show that n is invariant under any smooth transformation. Consider an infinitesimal transformation $U \to U + \delta U$. Show that $\delta U^{\dagger} = -U^{\dagger 2} \delta U$.

c) Use this result to show that $\delta(U\partial_{\phi}U^{\dagger}) = -\partial_{\phi}(U^{\dagger}\delta U)$.

d) Use this to show that $\delta n = 0$. Since any smooth deformation can be generated by compounding infinitesimal ones, this proves that n is invariant under any smooth transformation.