7 Mathematical framework for QED

Main reference for this section is [17, Chapter 7].

7.1 Classical field theory

Consider a Lagrangian $\mathcal{L}(\phi, \phi^*, \partial \phi, \partial \phi^*; A, \partial A)$ where A is a vector field, ϕ a complex scalar field. Suppose first that \mathcal{L} is invariant under the transformations

$$\phi_{\varepsilon}(x) = e^{i\varepsilon(x)}\phi(x), \quad \phi_{\varepsilon}^{*}(x) = e^{-i\varepsilon(x)}\phi^{*}(x), \quad A_{\mu,\varepsilon}(x) = A_{\mu}(x) + \partial_{\mu}\varepsilon(x), \quad (108)$$

for some function ε . Thus the corresponding variation of the Lagrangian must vanish. Exploiting the Euler-Lagrange equations we get

$$\delta \mathcal{L} = (\partial_{\mu} j^{\mu}) \varepsilon + (j^{\nu} - \partial_{\mu} F^{\mu\nu}) \partial_{\nu} \varepsilon - (F^{\mu\nu}) \partial_{\mu} \partial_{\nu} \varepsilon, \qquad (109)$$

where

$$j^{\mu}(x) := \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}(x)i\phi(x) - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi^{*})}(x)i\phi^{*}(x), \quad F^{\mu\nu} := -\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{\nu})}$$
(110)

• From the $\partial_{\mu}\partial_{\nu}\varepsilon$ -term of the (109) we obtain that the symmetric part of $F^{\mu\nu}$ vanishes, i.e.

$$F^{\mu\nu} = -F^{\nu\mu} \tag{111}$$

• From the $\partial_{\nu}\varepsilon$ -term of the (109) we get the *local Gauss Law*

$$\partial_{\mu}F^{\mu\nu} = j^{\nu} \tag{112}$$

• From the ε -term of (109) we get $\partial_{\mu} j^{\mu} = 0$ and $\partial_t Q = 0$, where

$$Q = \int d^3y \, j^0(0, \vec{y}). \tag{113}$$

(Noether's theorem)

• Furthermore, Q is the infinitesimal generator of the global U(1) symmetry, i.e.

$$\{Q,\phi(0,\vec{x})\} = -\frac{d}{d\varepsilon}\phi_{\varepsilon}(0,\vec{x})|_{\varepsilon=0} = -i\phi(0,\vec{x}),\tag{114}$$

$$\{Q, \phi^*(0, \vec{x})\} = -\frac{d}{d\varepsilon} \phi^*_{\varepsilon}(0, \vec{x})|_{\varepsilon=0} = i\phi^*(0, \vec{x}).$$
(115)

Here the Poisson bracket is defined by

$$\{F,G\} = \int d^3z \left(\frac{\delta F}{\delta\phi(0,\vec{z})} \frac{\delta G}{\delta\pi(0,\vec{z})} - \frac{\delta F}{\delta\pi(0,\vec{z})} \frac{\delta G}{\delta\phi(0,\vec{z})}\right) + \cdots$$
(116)

where $\pi(z) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi)(z)}$ is the canonical momentum and the omitted terms correspond to ϕ^* and A. (Note, however, that terms corresponding to A are not relevant for (115)).

• On the other hand using $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ we can compute

$$-i\phi(0,\vec{x}) = \{Q,\phi(0,\vec{x})\} = \int d^3y \{j^0(0,\vec{y}),\phi(0,\vec{x})\}$$

= $\int d^3y \{\partial_i F^{i,0}(0,\vec{y}),\phi(0,\vec{x})\} = \lim_{R \to \infty} \int_{B_R} d^3y \{\vec{\nabla} \cdot \vec{E}(0,\vec{y}),\phi(0,\vec{x})\}$
= $\lim_{R \to \infty} \int_{\partial B_R} d\vec{\sigma}(\vec{y}) \cdot \{\vec{E}(0,\vec{y}),\phi(0,\vec{x})\},$ (117)

where $\vec{E} := (F^{1,0}, F^{2,0}, F^{3,0})$, B_R is a ball of radius R centered at zero, ∂B_R its boundary (a sphere) and we used the Stokes theorem. Note that in quantum theory, where $\{\cdot, \cdot\} \rightarrow -i[\cdot, \cdot]$ above⁶, the last expression would be zero by locality, giving a contradiction!

- One possible way out (which we will not follow) is to abandon locality of charged fields but keep $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ (Quantisation in the Coulomb gauge).
- We will follow instead the Gupta-Bleuler approach, where all fields are local, but $\langle \Psi_1 | (\partial_\mu F^{\mu\nu} - j^\nu) \Psi_2 \rangle = 0$ only for Ψ_1, Ψ_2 in some 'physical subspace' $\mathcal{H}' \subset \mathcal{H}$. This will enforce $\langle \Psi | \Psi \rangle < 0$ for some $\Psi \in \mathcal{H}$ thus we have to use 'indefinite metric Hilbert spaces' (Krein spaces)
- Incidentally, local, Poincaré covariant massless vector fields A^{μ} do exist on Krein spaces (which is not the case on Hilbert spaces). Thus we will have candidates for the electromagnetic potential.

7.2 Strocchi-Wightman framework [18, 19]

Definition 7.1 An 'indefinite metric Hilbert space' (Krein space) \mathcal{H} is a vector space equipped with a sesquilinear form $\langle \cdot | \cdot \rangle$ s.t.

- $\langle \cdot | \cdot \rangle$ is non-degenerate, i.e. for any $\Psi \neq 0$ there is some $\Phi \in \mathcal{H}$ s.t. $\langle \Psi | \Phi \rangle \neq 0$.
- *H* carries an auxiliary positive-definite scalar product $(\cdot | \cdot)$ w.r.t. which it is a Hilbert space.
- There is a bounded, invertible operator η on \mathcal{H} , self-adjoint w.r.t. $(\cdot | \cdot)$, s.t. $\langle \Psi_1 | \Psi_2 \rangle = (\Psi_1 | \eta \Psi_2)$.

Only the first property above is physically important. The role of the last two properties is to provide a topology on \mathcal{H} which is needed for technical reasons (e.g. density of various domains).

Definition 7.2 A Strocchi-Wightman relativistic quantum mechanics is given by:

⁶It should be mentioned that for gauge theories the standard quantisation prescription $\{\cdot, \cdot\} \rightarrow -i[\cdot, \cdot]$ may fail in general and a detour via 'Dirac brackets' is required. However, in the above situation the simple analogy can be maintained.

- 1. A Krein space H.
- 2. A physical subspace $\mathcal{H}' \subset \mathcal{H}$ s.t. $\langle \Psi | \Psi \rangle \geq 0$ for $\Psi \in \mathcal{H}'$.
- 3. The physical Hilbert space $\mathcal{H}_{ph} := (\mathcal{H}'/\mathcal{H}'')^{cpl}$, where $\mathcal{H}'' := \{\Psi \in \mathcal{H}' \mid \langle \Psi | \Psi \rangle = 0\}$. Its elements are equivalence classes $[\Psi] = \{\Psi + \Psi_0 \mid \Psi_0 \in \mathcal{H}''\}$, where $\Psi \in \mathcal{H}'$.
- 4. A $\langle \cdot | \cdot \rangle$ -unitary representation $\widetilde{\mathcal{P}}^{\uparrow}_{+} \ni (\widetilde{\Lambda}, a) \mapsto U(\widetilde{\Lambda}, a)$ in \mathcal{H} s.t. \mathcal{H}' is invariant under U. Then U induces a unitary representation on \mathcal{H}_{ph} by $U_{ph}(\widetilde{\Lambda}, a)[\Psi] = [U(\widetilde{\Lambda}, a)\Psi]$. We assume that U_{ph} is continuous and satisfies the spectrum condition.
- 5. A unique (up to phase) vacuum vector $\Omega \in \mathcal{H}'$ s.t. $\langle \Omega | \Omega \rangle = 1$ and $U(\widetilde{\Lambda}, a)\Omega = \Omega$.

Definition 7.3 A Strocchi-Wightman QFT is given by:

- 1. A Strocchi-Wightman relativistic $QM(\mathcal{H}, \mathcal{H}', U, \Omega)$.
- 2. A family of operator-valued distributions $(\phi_{\ell}^{(\kappa)}, D), \kappa \in \mathbb{I}, \ell = 1, 2, \ldots r_{\kappa}$ s.t.
 - I is some finite or infinite collection of indices numbering the types of the fields corresponding to finite-dimensional representations $D^{(\kappa)}$ of $\widetilde{\mathcal{L}}_{+}^{\uparrow} = SL(2, \mathbb{C}).$
 - For a fixed $\kappa \in \mathbb{I}$ the field $\phi^{(\kappa)} = (\phi_{\ell}^{(\kappa)})_{\ell=1,\dots,r_{\kappa}}$ transforms under $D^{(\kappa)}$.
 - For any κ, ℓ there exists some $\overline{\kappa}, \overline{\ell}$ s.t. $\phi_{\ell}^{(\kappa)}(f)^{\dagger} = \phi_{\overline{\ell}}^{(\overline{\kappa})}(\overline{f})$.
 - $\Omega \in D$ and $U(\widetilde{\Lambda}, a)D \subset D$ for all $(\widetilde{\Lambda}, a) \in \widetilde{\mathcal{P}}_{+}^{\uparrow}$.

satisfying:

(a) (Locality) If supp f_1 and supp f_2 are spacelike separated, then

$$[\phi_{\ell}^{(\kappa)}(f_1), \phi_{\ell'}^{(\kappa')}(f_2)]_{-} = 0 \ or \ [\phi_{\ell}^{(\kappa)}(f_1), \phi_{\ell'}^{(\kappa')}(f_2)]_{+} = 0$$
(118)

in the sense of weak commutativity on D. (Here -/+ refers to commutator/anti-commutator).

(b) (Covariance) For all $(\widetilde{\Lambda}, a) \in \widetilde{\mathcal{P}}_{+}^{\uparrow}$ and $f \in S$

$$U(\widetilde{\Lambda}, a)\phi_{\ell}^{(\kappa)}(f)U(\widetilde{\Lambda}, a)^{\dagger} = \sum_{\ell'} D_{\ell\ell'}^{(\kappa)}(\widetilde{\Lambda}^{-1})\phi_{\ell'}^{\kappa}(f_{(\Lambda, a)}).$$
(119)

Here $f_{(\Lambda,a)}(x) = f(\Lambda^{-1}(x-a)).$

(c) (Cyclicity of the vacuum) $\mathcal{D} = \text{Span} \{ \phi_{\ell_1}^{(\kappa_1)}(f_1) \dots \phi_{\ell_m}^{(\kappa_m)}(f_m) \Omega \mid f_1, \dots, f_m \in S, m \in \mathbb{N}_0 \}$ is a dense subspace of \mathcal{H} in the topology given by $(\cdot \mid \cdot)$.

The distributions $(\phi_{\ell}^{(\kappa)}, D)$ are called the Strocchi-Wightman quantum fields.

7.3 Free field examples

7.3.1 Free Wightman fields

- 1. Suppose first that \mathcal{H} is a Hilbert space w.r.t $\langle \cdot | \cdot \rangle$ (i.e., $\langle \cdot | \cdot \rangle$ is a positivedefinite scalar product and we can choose $\mathcal{H}' = \mathcal{H}$). Then the above setting is called the Wightman framework for fields with arbitrary (finite) spin.
- 2. Let us stay for a moment in this Hilbert space framework. Recall that finite-dimensional irreducible representations $D^{(\kappa)}$ of $\widetilde{\mathcal{L}}^{\uparrow}_{+}$ are labelled by two numbers (A, B). From the physics lecture you know the following free field examples:
 - (0,0): scalar field ϕ
 - $\left(\frac{1}{2}, \frac{1}{2}\right)$: massive vector field j^{μ}
 - $\left(\frac{1}{2},0\right) \oplus \left(0,\frac{1}{2}\right)$: Dirac field ψ
 - $(1,0) \oplus (0,1)$: Faraday tensor $F^{\mu\nu}$.
- 3. It is however not possible to construct a massless free vector field A^{μ} on a Hilbert space which is local and Poincaré covariant [25]. Such fields turn out to exist on Krein spaces, which is usually given as the main reason to introduce them.

7.3.2 Free massless vector field A^{μ} on Krein space

The Gupta-Bleuler electromagnetic potential has the form

$$A_{\mu}(x) = \int \frac{d^{3}k}{2k_{0}(2\pi)^{3}} \sum_{\lambda=0}^{3} [a^{(\lambda)}(k)\varepsilon_{\mu}^{(\lambda)}(k)e^{-ikx} + a^{(\lambda)\dagger}(k)\varepsilon_{\mu}^{(\lambda)*}(k)e^{ikx}], \quad (120)$$

where $k_0 = |k|$ and $\varepsilon_{\mu}^{(\lambda)}$ are polarisation vectors which satisfy the orthogonality and completeness relations

$$\varepsilon^{(\lambda),\mu}(k) \cdot \varepsilon^{(\lambda')*}_{\mu}(k) = g^{\lambda\lambda'}, \quad \sum_{\lambda} (g^{\lambda\lambda})^{-1} \varepsilon^{(\lambda)}_{\mu}(k) \cdot \varepsilon^{(\lambda)*}_{\nu}(k) = g_{\mu\nu}.$$
(121)

For the $a^{\lambda}, a^{(\lambda)\dagger}$ we have

$$[a^{(\lambda)}(k), a^{(\lambda')\dagger}(k')] = -g^{\lambda\lambda'} 2k^0 (2\pi)^3 \delta(\vec{k} - \vec{k}').$$
(122)

Due to $-g^{00} = -1$ we have $\langle a^{(0)\dagger}(f)\Omega | a^{(0)\dagger}(f)\Omega \rangle < 0$ thus our 'Fock space' \mathcal{H} turns out to be a Krein space. Furthermore, the 'photons' above have four polarisations and not two. These unphysical degrees of freedom will be eliminated by the Gupta-Bleuler subsidiary condition (127) below.

Let us point out another peculiarity of this potential: We can form $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ so that $\varepsilon^{\alpha\beta\mu\nu}\partial_{\beta}F_{\mu\nu}(x) = 0$ is automatic. But the remaining free Maxwell equations fail:

$$\partial_{\mu}F^{\mu\nu}(x) = -\partial^{\nu}(\partial_{\rho}A^{\rho})(x) \neq 0.$$
(123)

This can be expected on general grounds:

Theorem 7.4 (Strocchi [20, 21]) Any Strocchi-Wightman vector field A_{μ} with $\partial_{\mu}F^{\mu\nu}(x) = 0$ is trivial, i.e. $\langle \Omega | F^{\mu\nu}(x) F^{\alpha\beta}(y) \Omega \rangle = 0$.

This highlights the necessity of a gauge-fixing term in the Lagrangian, which is another point to which we will come below in the context of interacting QED.

7.4 Quantum Electrodynamics

Definition 7.5 QED is a Strocchi-Wightman QFT whose fields include $F^{\mu\nu}, j^{\mu}$ and some 'charged fields' $\phi^{(\kappa)}$ s.t. the physical subspace \mathcal{H}' satisfies:

- (i) There is a dense domain $D' \subset \mathcal{H}'$ s.t. $F^{\mu\nu}(f)D' \subset D'$, $j^{\mu}(f)D' \subset D'$ and $U(a, \widetilde{\Lambda})D' \subset D'$.
- (ii) For $\Psi_1 \in \mathcal{H}'$ and $\Psi_2 \in D'$

$$\langle \Psi_1 | (\partial_\mu F^{\mu\nu} - j^\nu)(f) \Psi_2 \rangle = 0, \quad \langle \Psi_1 | (\varepsilon_{\mu\nu\rho\sigma} \partial^\nu F^{\rho\sigma})(f) \Psi_2 \rangle = 0.$$
(124)

For QED defined as above, one can define the electric charge operator by suitably regularizing $Q = \int d^3y \, j^0(0, \vec{y})$.

Theorem 7.6 (Strocchi-Picasso-Ferrari [22]) Suppose that Q is an infinitesimal generator of the global U(1) symmetry, i.e. for some field ϕ

$$\phi(x) = [Q, \phi(x)] \text{ on } \mathcal{H}$$
(125)

and that $\langle \Psi_1 | \phi(x) \Psi_2 \rangle \neq 0$ for some $\Psi_1, \Psi_2 \in \mathcal{H}'$. Then

- 1. There is $\Psi \in D'$ s.t. $(\partial_{\mu}F^{\mu\nu} j^{\nu})(x)\Psi \neq 0$.
- 2. There is $0 \neq \Psi \in \mathcal{H}'$ s.t. $\langle \Psi | \Psi \rangle = 0$, i.e. $\mathcal{H}'' \neq \{0\}$.
- 3. There is $\Psi \in \mathcal{H}$ s.t. $\langle \Psi | \Psi \rangle < 0$.

The proof is simple and relies on a Stokes theorem computation analogous to (117). This theorem shows that the Maxwell equations can hold on \mathcal{H}' at best in matrix elements and that the Krein space framework is needed in (local) QED also in the presence of interactions.

Definition 7.7 We say that QED is in the Gupta-Bleuler gauge if it contains (in addition to other fields) a vector field A_{μ} s.t. $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and

$$\partial_{\mu}F^{\mu\nu} - j^{\nu} = -\partial^{\nu}(\partial_{\rho}A^{\rho}) \tag{126}$$

holds as an operator identity on \mathcal{H} . Furthermore, the physical subspace is chosen as

$$\mathcal{H}' := \{ \Psi \in \mathcal{H} \mid (\partial_{\rho} A^{\rho})^{(+)}(f) \Psi = 0 \text{ for all } f \in S \},$$
(127)

where $(\partial_{\rho}A^{\rho})^{(+)}$ is the positive frequency part of $(\partial_{\rho}A^{\rho})$.

We add several remarks on this definition:

- 1. Note that by applying ∂_{ν} to (126) and using current conservation we obtain $\Box(\partial_{\rho}A^{\rho}) = 0$, thus the decomposition into positive and negative frequency parts is meaningful. For this reason, (124) formally hold. But positivity of the scalar product on \mathcal{H}' needs to be assumed. (Known only for the free electromagnetic field).
- 2. The equation (126) comes from a classical Lagrangian with the gauge-fixing term, e.g.

$$\mathcal{L}_{\rm gf} = (D^{\mu}\phi)^* (D_{\mu}\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}(\partial_{\mu}A^{\mu})^2.$$
(128)

 \mathcal{L}_{gf} is still invariant under 'residual' local gauge transformations s.t. $\Box \varepsilon(x) = 0$. Denote infinitesimal transformations of the fields as $\delta_{\varepsilon}\phi(x) = i\varepsilon(x)\phi(x)$, $\delta_{\varepsilon}\phi(x)^* = -i\varepsilon(x)\phi(x)^*$ and $\delta_{\varepsilon}A_{\mu}(x) = \partial_{\mu}\varepsilon(x)$.

- 3. Def. Let \mathcal{A} denote the algebra spanned by polynomials of quantum fields A^{μ} , j^{μ} , ϕ , ϕ^* smeared with smooth, compactly supported functions. We extend δ_{ε} to \mathcal{A} via the Leibniz rule and denote the subalgebra of (residual) gauge-invariant elements by \mathcal{A}_{gi} .
- 4. It turns out, that a 'local vector' (i.e. $\Psi = A\Omega$, where $A \in \mathcal{A}$) belongs to \mathcal{H}' iff $A \in \mathcal{A}_{gi}$ [17].

The material below was not covered in the lecture, but we leave it here for interested readers.

7.5 Electrically charged states of QED

Important problem in QED is a construction of physical electrically charged states. Vectors of the form $\phi(f)\Omega$, where ϕ is a charged field, are not in \mathcal{H}' , because ϕ is not invariant under residual gauge transformations. Moreover:

Proposition 7.8 [17] For any local vectors $\Psi, \Phi \in \mathcal{H}'$ in QED we have $\langle \Psi | Q\Phi \rangle = 0$.

We face the problem of constructing a field ϕ_C which is invariant under (residual) local gauge transformations (so that $\phi_C(f)\Omega$ is 'close' to \mathcal{H}') and non-invariant under global gauge transformations (so that $\phi_C(f)\Omega$ is charged). Here is a candidate:

$$\phi_C(x) := e^{i[(\Delta)^{-1}\partial_i A^i](x)} \phi(x) = e^{i[(\Delta)^{-1}\partial_i (A^i + \partial^i \varepsilon)](x)} e^{i\varepsilon(x)} \phi(x), \tag{129}$$

where the last equality holds for local gauge transformations but fails for global (i.e. $\varepsilon(x)=\text{const}$). ϕ_C is simply the (non-local) charged field in the Coulomb gauge expressed in terms of the Gupta-Bleuler fields. Indeed, we can see (129) as a gauge

transformation. Then the corresponding transformation applied to the potential gives

$$A_{\mu,C}(x) = A_{\mu}(x) + \partial_{\mu}[(\Delta)^{-1}\partial_{i}A^{i}](x).$$
(130)

which satisfies $\vec{\nabla} \cdot \vec{A}_C = 0$. Then $\phi_C(f)\Omega$ is a candidate for an electrically charged states. Since $\phi_C(f)$ is a very singular objects, this vector 'escapes' from \mathcal{H} and its control (in the perturbative or axiomatic setting) requires subtle mathematical methods (cf. [17,18]). These are outside of the scope of these lectures.

References

- M. Reed, B. Simon, Methods of modern mathematical physics I: Functional Analysis. Academic Press, 1975.
- [2] M. Reed, B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, 1975.
- [3] M. Reed, B. Simon, Methods of modern mathematical physics III. Scattering theory. Academic Press, 1979.
- [4] W. Arveson, The harmonic analysis of automorphism groups. In Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982.D., pp. 199-269.
- [5] J. Glimm, A. Jaffe, Quantum physics. A functional integral point of view. Springer 1987.
- [6] W. Rudin, Real and Complex Analysis. McGraw-Hill Book Company, 1987.
- [7] N. Bohr and L. Rosenfeld, Kgl. Danske Vid. Sels., Math.-fys. Medd. 12 (1933).
- [8] K. Hepp, On the connection between the LSZ and Wightman Quantum Field Theory. Commun. Math. Phys. 1, 95–111 (1965).
- [9] K. Osterwalder and R. Sénéor, The scattering matrix is nontrivial for weakly coupled $P(\phi)_2$ models. Helvetica Physica Acta **49**, (1976).
- [10] G. Keller, C. Kopper, M. Salmhofer, Perturbative renormalization and effective Lagrangians in φ⁴₄. Helv. Phys. Acta 65 32-52 (1992).
- [11] J. Polchinski, Renormalization and effective Lagrangians. Nuclear Physics B 231, 269-295 (1984).
- [12] W. Dybalski and C. Gérard, A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332, (2014) 1167–1202.
- [13] W. Dybalski, Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005).
- [14] P.J. Olver, Applications of Lie groups to differential equations. Springer 1986.
- [15] A.W. Knapp, *Lie groups beyond an introduction*. Birkhäuser 1996.
- [16] A. Trautman, *Grupy oraz ich reprezentacje z zastosowaniami w fizyce*. Lecture notes, 2011.
- [17] F. Strocchi, An introduction to non-perturbative foundations of quantum field theory. Oxford University Press, 2013.

- [18] 0. Steinmann, Perturbative quantum electrodynamics and axiomatic field theory. Springer, 2000.
- [19] F. Strocchi and A. S. Wightman, Proof of the charge superselection rule in local relativistic quantum field theory. J. Math. Phys. 15, 2198 (1974)
- [20] F. Strocchi, Gauge problem in quantum field theory. Phys. Rev. 162 1429 (1967).
- [21] F. Strocchi, Gauge problem in quantum field theory III. Phys. Rev. D 2 2334 (1970).
- [22] R. Ferrari, L.E. Picasso and F. Strocchi, Some remarks on local operators in quantum electrodynamics. Commun. Math. Phys. 35 25 (1974).
- [23] D. Buchholz, Gauss' Law and the infraparticle problem. Physics Letters B 174 331334 (1986).
- [24] J. Fröhlich, G. Morchio and S. Strocchi, Infrared problem and spontaneous breaking of the Lorentz group in QED. Physics Letters B 89 61-64 (1979).
- [25] A.S. Wightman and L. Garding, Fields as operator-valued distributions in relativistic quantum theory. Arkiv för Fysik 28 (1964) 129–184.