
5 Symmetries I

Symmetries in physics are described by groups. We recall some definitions and
facts from the theory of groups and their representations following [14, Chapter
1], [15, Chapter 1], [16].

5.1 Groups

1. Def. A group is a set G with an operation · : G ⇥ G ! G s.t.

• (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 2 G,

• There exists e 2 G s.t. g · e = e · g = g for all g 2 G,

• For any g 2 G there exists g�1 2 G s.t. g · g�1 = g�1 · g = e.

2. Examples:

• Z2 = {1,�1} is the group of parity transformations.

• Let V be a vector space over the field K (R or C). Then GL(V ) denotes
the group of all invertible linear mappings V ! V .

• For V = Kn we write GL(n, K) := GL(V ). This is the group of invert-
ible n ⇥ n matrices with entries in K.

• SO(3) = { R 2 GL(3, R) | RT R = I, det R = 1} - the group of rota-
tions.

• SU(2) = {U 2 GL(2, C) | U †U = I, det U = 1 } - special unitary group.

3. Let G, Ĝ be groups. Then H : G ! Ĝ is a group homomorphism if

H(g1g2) = H(g1)H(g2) for any g1, g2 2 G. (75)

If H is in addition a bijection then it is called an isomorphism.
(For Lie groups, which we discuss below, homomorphisms are required to be
smooth and isomorphisms should also have smooth inverse).

5.2 Lie groups

1. Def. G is a Lie group if it is a smooth real manifold and the group operation
and taking the inverse are smooth maps. The dimension of G is the dimension
of this manifold.

2. Def. A set M is an n-dimensional smooth manifold if the following hold:

• It is a Hausdor↵ topological space. (Distinct points have non-overlapping
neighbourhoods, unique limits).

• There is an open cover i.e. a family of open sets U↵ ⇢ M, ↵ 2 I, s.t.S
↵2I U↵ = M .
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• There is an atlas A(M) := { ⌘↵ : U↵ ! O↵ |↵ 2 I } given by some fam-
ily of open sets O↵ ⇢ Rn and charts ⌘↵, which are homeomorphisms.
(A homeomorphism is a continuous bijection whose inverse is also con-
tinuous).

• Let O↵,� := ⌘�(U↵ \ U�) ⇢ Rn and let O�,↵ = ⌘↵(U↵ \ U�) ⇢ Rn. Then
⌘↵ � ⌘�1

� : O↵,� ! O�,↵ is smooth.

3. Def. A map F : M ! M̂ between two manifolds is smooth if all the maps
⌘̂� � F � ⌘�1

↵ : O↵ ! Ô� are smooth whenever well-defined. It is called a
di↵eomorphism if it is a bijection and the inverse is also smooth. We denote
by C1(M) the space of smooth maps M ! R.

4. Def. A smooth map R ⇥ M 3 (t, x) 7! �t(x) 2 M , is called a flow (of a
vector field) if

�0 = idM , �s � �t = �s+t for t, s 2 R. (76)

5. Def. A vector field X : C1(M) ! C1(M) with the flow � is given by

X(f) =
d

dt
f � �t|t=0, f 2 C1(M). (77)

6. Fact. Given two vector fields X, Y , the commutator [X, Y ](f) := X(Y (f))�
Y (X(f)) is again a vector field.

7. Def. A tangent vector at point x 2 M is a map Xx : C1(M) ! R given by
Xx(f) = d

dt
f � �t(x)|t=0. We denote by TxM the space of all tangent vectors

at x (for di↵erent flows).
Example: Let M = Rn and �t = (�1

t , . . . , �
n
t ) be a flow. Then

Xx(f) =
nX

i=1

d

dt
�i

t(x)|t=0
@f

@xi
(x). (78)

If one ‘forgets’ f and thinks about @
@xi as basis vectors then the expression

Xx =
Pn

i=1
d
dt
�i

t(x)|t=0
@
@xi is clearly the tangent vector to t ! �t(x) at x.

8. Def. (Transport of a vector field) Let F : M ! M̂ be a di↵eomorphism and
X a vector field on M given by a flow {�t}t2R. Then F⇤X is a vector field
on M̂ given by F � �t � F�1. That is

(F⇤X)(f̂) =
d

dt
f̂ � F � �t � F�1|t=0, f̂ 2 C1(M̂). (79)

9. Now we can introduce the Lie algebra G0 of a Lie group G.

• Def. Let G be a Lie group and g 2 G. Then, the left-multiplication
Lg : G ! G, acting by Lgg̃ = gg̃ is a di↵eomorphism.
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• Def. We say that a vector field X on G is left-invariant if ((Lg)⇤X) = X
for any g 2 G.

• Fact. If X, Y are left-invariant, then also [X, Y ] is left-invariant.

• Def. The Lie algebra G0 of G is the vector space of left-invariant vector
fields on G with algebraic operation given by the commutator.

10. Def. For X 2 G0 we set exp(X) := �1(e).

11. Fact. This exponential map is a di↵eomorphism of a neighbourhood of zero
in G0 into a neighbourhood of e in G.

5.3 From multiplication law in G to algebraic operation
in G0

1. Fact. Left-invariance and (79) give Xg(f) = Xe(f � Lg) for any g 2 G.
Thus left-invariant vector fields are determined by their values at the neutral
element e. In this sense, G0 can be identified with TeG and has the same
dimension as G.

2. Let us choose a basis X1, . . . , Xn in G0. We have

[XA, XB]e =
nX

C=1

fCABXC
e , (80)

where fCAB are called the structure constants. In physics one usually defines
the infinitesimal generators4 tA := iXA and writes (80) as

[tA, tB] =
nX

C=1

ifCABtC , (81)

where evaluation at e is understood. We follow the mathematics convention
below, unless stated otherwise.

3. Let us determine fCAB from the multiplication law of the group G. We
work in some chart ⌘ : U ! O ⇢ Rn whose domain U is a neighbourhood
of e, in which the group elements have the form g = ⌘�1("1, . . . , "n), e =
⌘�1(0, . . . , 0). For "1, "2 2 O, i.e. "i = ("1

i , . . . , "
n
i ), i = 1, 2, we define the

multiplication function

m("1, "2) := ⌘(⌘�1("1)⌘
�1("2)) (82)

4As we defined G0 as a real vector space, it may be unclear what the multiplication by ‘i’
means. We recall that is it always possible to ‘complexify’ a real vector space. Furthermore, in
the later part of these lectures we will represent Lie algebras on complex vector spaces. Then ‘i’
will be provided by the vector space.
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which takes values in O i.e. m("1, "2) = (m1("1, "2), . . . , m
n("1, "2)). Since

⌘�1(0) = e, we have m("1, 0) = "1 and m(0, "2) = "2. Consequently

@mi

@"j
1

(0, 0) =
@mi

@"j
2

(0, 0) = �i,j. (83)

Given a flow of a vector field �t in G we define the transported flow �̃t(") =
⌘ � �t � ⌘�1(") = (�̃1

t ("), . . . , �̃
n
t (")).

Lemma 5.1 Let X1, . . . , XA . . . , Xn be vector fields on G whose flows sat-
isfy

d

dt
�̃i

A,t(")|t=0 =
@mi

@"A
2

(", 0). (84)

Then these fields are left-invariant. Furthermore, they are linearly indepen-
dent near e and thus span the Lie algebra.

Proof. We want to verify XA
g (f) = XA

e (f � Lg) for f 2 C1(M) and

g = ⌘�1("). Thus we set f̃ := f � ⌘�1 and compute

XA
⌘�1(")(f) =

d

dt
f(�A,t � ⌘�1("))|t=0 =

d

dt
f̃(�̃A,t("))|t=0

=
nX

i=1

d

dt
(�̃i

A,t("))|t=0
@f̃

@"i
(") =

nX

i=1

@mi

@"A
2

(", 0)
@f̃

@"i
("). (85)

On the other hand

XA
⌘�1(0)(f � L⌘�1(")) =

d

dt
f(L⌘�1(")�A,t � ⌘�1(0))|t=0

=
d

dt
f(⌘�1(")⌘�1(�̃A,t(0)))|t=0 =

d

dt
f̃(m(", �̃A,t(0)))|t=0

=
X

i,k

@f̃

@"i
(")

@mi

@"k
2

(", 0)
d

dt
�̃k

A,t(0)|t=0

| {z }
�k,A by (83),(84).

, (86)

which concludes the proof of left-invariance. It su�ces to check linear inde-
pendence near e which follows from (85) and (83). ⇤

Lemma 5.2 Under the assumptions of the previous lemma, we have

[XA, XB]e =
nX

C=1

fCABXC
e , (87)

with fCAB = @2mC

@"A
1 @"B

2
(0, 0) � @2mC

@"B
1 @"A

2
(0, 0). (Homework).
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5.4 Abstract Lie algebras

1. Def. A Lie algebra is a vector space g over the field R together with a bilinear
form [ · , · ] : g ⇥ g ! g which satisfies

• Antisymmetry: [X, Y ] = �[Y, X] for all X, Y 2 g.

• Jacobi identity: [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]] for all X, Y, Z 2 g.

2. Examples:

• Let V be a vector space over a field K. Then gl(V ) denotes the Lie
algebra of all linear mappings V ! V with [X, Y ] = X � Y � Y � X.

• For V = Kn we write gl(n, K) := gl(V ). This is the Lie algebra of all
n ⇥ n matrices with entries in K.

• so(3) = { X 2 gl(3, R) | XT = �X } is the Lie algebra of rotations.

• su(2) = { X 2 gl(2, C) | X† = �X, Tr(X) = 0 }.

3. Def. Let g, h be Lie algebras. A linear map h : g ! h is a Lie algebra
homomorphism if h([X, Y ]) = [h(X), h(Y )]. If h is a bijection, it is called an
isomorphism.

4. For example, so(3) and su(2) are isomorphic Lie algebras.

5. Thm. If g is a finite-dimensional Lie algebra then there is a unique, up to
isomorphism, simply-connected Lie group G s.t. G0 = g.
(Recall that a topological space is simply connected if any loop can be con-
tinuously contracted to a point).

6. Fact: If H : G 7! Ĝ is a Lie group homomorphism then

h(X) =
d

dt
H(exp(tX))|t=0, X 2 G0 (88)

is a Lie algebra homomorphism. Furthermore H(exp(tX)) = exp(th(X)) for
all t 2 R.

7. Thm. Let G, Ĝ be Lie groups and suppose G is simply-connected. Then
a Lie algebra homomorphism h : G0 ! Ĝ0 can be lifted to a Lie group
homomorphism H.

5.5 Matrix Lie groups

1. Def. A closed subgroup of GL(n, K) is called a matrix Lie group. For example
SO(3) and SU(2).

2. Fact: Let G be a matrix Lie group. The Lie algebra G0 of this Lie group is
given by

G0 = { X 2 gl(n, K) | etX 2 G for all t 2 R }. (89)
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We have GL(n, K)0 = gl(n, K), SO(3)0 = so(3), SU(2)0 = su(2). Further-
more, abstract exp : G0 ! G coincide with the exponential function of a
matrix.

3. Recall that so(3) and su(2) are isomorphic Lie algebras. However SO(3)
and SU(2) are not isomorphic Lie groups. In particular, SU(2) is simply
connected, SO(3) is not.
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6 Symmetries II

6.1 Representations

1. Def. A group homomorphism D : G ! GL(V ) is called a representation.

2. Let D1 : G ! GL(V1) and D2 : G ! GL(V2) be two reps of G.

• Def: The direct sum of D1, D2, acting on V1 � V2 is defined by:

(D1 � D2)(g)(v1 � v2) = (D1(g)v1) � (D2(g)v2). (90)

• Def: The tensor product of D1, D2 acting on V1 ⌦ V2 is defined by

(D1 ⌦ D2)(g)(v1 ⌦ v2) = (D1(g)v1) ⌦ (D2(g)v2). (91)

3. The property of irreducibility of a representation D can be explained as
follows:

• Def. We say that a subspace W ⇢ V is invariant, if D(g)w 2 W for
any g 2 G and w 2 W ,

• Def. We say that a representation is irreducible if it has no invariant
subspaces except for {0} and V .

• Def. A representation is completely reducible if it is a direct sum of
irreducible representations.

• Fact. (Schur Lemma). Let D : G ! GL(V ) be an irreducible represen-
tation and V complex. If A 2 GL(V ) commutes with all D(g), g 2 G,
then it has the form A = �I, � 2 C.

4. Def: A Lie algebra homomorphism d : g ! gl(V ) is called a representation.
Irreducibility and complete reducibility of such representations are defined
analogously as for groups.

5. Thm. Let D : G ! GL(V ) be a representation of a Lie group. Then

d(X) =
d

dt
D(exp(tX))|t=0, for X 2 G0 (92)

defines a representation of G0.

6. Thm. Let G be a simply-connected Lie group and G0 its Lie algebra. Let
d : G0 ! gl(V ) be a representation. Then there exists a unique representa-
tion D : G ! GL(V ) s.t. (92) holds.

7. Def. Let G be a matrix Lie group. We say that a bilinear form b : G0⇥G0 ! R
is invariant, if b(gXg�1, gY g�1) = b(X, Y ) for all g 2 G, X, Y 2 G0.
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8. Fact. Let d : G0 ! gl(V ) be a representation, b an invariant bilinear form
on G0 and {X1, . . . , Xn} a basis in G0. Then the Casimir operator

C :=
X

A,B

b(XA, XB)d(XA)d(XB) (93)

is basis-independent and commutes with all d(X), X 2 G0. Thus, by the
Schur Lemma, it is a multiple of unity in any irreducible representation on
complex V .

6.2 Projective representations

1. Let V by a complex vector space.

• Def: U(1) = {ei'I |' 2 R } ⇢ GL(V ).

• Def: GL(V )/U(1) is the (Lie) group generated by the equivalence
classes A = {ei'A |' 2 R}.

• Def: A homomorphism D : G ! GL(V )/U(1) is called a projective
representation (a representation up to a phase).

• For equivalence classes we have D(g1)D(g2) = D(g1g2). But for a given
choice of representatives D(g) 2 D(g), (s.t. D(e) = I, g ! D(g)
continuous)

D(g1)D(g2) = ei'(g1,g2)D(g1g2). (94)

for some function ' : G ⇥ G ! R.

2. D gives rise to the homomorphism d : G0 ! (GL(V )/U(1))0 given by

d(X) =
d

dt
D(exp(tX))|t=0, X 2 G0. (95)

3. We have (GL(V )/U(1))0 = (GL(V )0/U(1)0) = gl(V )/(iR). The elements of
this Lie algebra are the equivalence classes Y = {Y + iz |z 2 R}.

4. For equivalence classes we have [d(XA), d(XB)] =
P

C fCABd(XC). But for
any given choice of representatives d(XA) 2 d(XA)

[d(XA), d(XB)] =
X

C

fCABd(XC) � izA,BI, (96)

where zA,B are called the central charges and the (-) sign in the last formula is
a matter of convention. In the physical notation one defines the infinitesimal
generators TA = id(XA) so that (96) reads

[TA, TB] =
X

C

ifCABTC + izA,BI. (97)

We follow the mathematical convection below unless stated otherwise.
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• In some cases it is possible to eliminate zA,B by passing to di↵erent
representatives ed(XA) = d(XA) + icA.

• Then ed becomes a Lie algebra representation G0 ! gl(V ).

• Hence, by a theorem above, ed can be lifted to a Lie group representation
eD : eG ! GL(V ), where eG is the unique simply-connected Lie group
with the Lie algebra G0. (The universal covering group).

5. Let us explain in more detail the concept of the covering space/group:

• Def. A topological space G is path connected, if for any g1, g2 2 G there
is a continuous map � : [0, 1] ! G s.t. �(0) = g1, �(1) = g2.

• Def. A topological space G is simply connected, if it is path connected
and every loop in the space can be continuously contracted to a point.

• Def. The universal cover of a connected topological space G is a simply-
connected space eG together with a covering map Hc : eG ! G. The
covering map is a local homeomorphism s.t. the cardinal number of
H�1

c (g) is independent of g. The universal cover is unique.

• Fact: If G is a Lie group, eG is also a Lie group and Hc : eG ! G is a
homomorphism s.t. ker Hc is a discrete subgroup.

6. The situation above occurs in particular for projective unitary representa-
tions of SO(3).

• One can choose D s.t. ei'(g1,g2) 2 {±1}. By continuity, ei'(g1,g2) = 1 for
g1, g2 close to e, hence zA,B = 0.

• Thus D can be lifted to a unitary representation eD of fSO(3) = SU(2).

More precisely, eD(A) = D(Hc(A)), where A 2 SU(2) and Hc : SU(2) !
SO(3) is the covering homomorphism.

• ker Hc := H�1
c (e) = Z2 thus SU(2)/Z2 ' SO(3) and every element of

SO(3) corresponds to two elements in SU(2). That is SU(2) is a double
covering of SO(3).

6.3 Representations of rotations

1. Fact: so(3) = { X 2 gl(3, R) | XT = �X } is the Lie algebra of SO(3) =
{ R 2 GL(3, R) | RT R = I, det R = 1}. Indeed, let X 2 so(3). Then

(etX)T etX = etXT

etX = e�tXetX = 1 (98)

det(etX) = etTrX = 1, (99)

where we used that a real anti-symmetric metric has vanishing diagonal
elements and consequently is traceless.
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2. We choose a basis in so(3) as follows

L1 =

2
4

0 0 0
0 0 �1
0 1 0

3
5 , L2 =

2
4

0 0 1
0 0 0
�1 0 0

3
5 , L3 =

2
4

0 �1 0
1 0 0
0 0 0

3
5 , (100)

so that e✓~n·~L is the rotation around the axis ~n, k~nk = 1, by angle ✓.

3. One verifies the commutation relations

[Li, Lj] = "ijkLk. (101)

These generators are related to the angular momentum operators J i via
Li = �iJ i. They satisfy accordingly

[J i, J j] = i"ijkJk. (102)

4. Some facts about the irreducible representations of so(3):

• From quantum mechanics we know that there is only one Casimir opera-
tor ~J2 = J2

1 +J2
2 +J2

3 , whose eigenvalues are j(j+1), for j = 0, 1/2, 1, . . ..

• The irreducible representations d(j) are labelled by j and are 2j + 1
dimensional.

• The basis vectors are denoted |j, mi, m = �j,�j + 1, . . . j, where
d(j)(J3)|j, mi = m|j, mi.

5. Recall that Hc : SU(2) ! SO(3) is the covering homomorphism. It gives
rise to the isomorphism hc : su(2) ! so(3) which can be described as follows:

• let �1, �2, �3 be the Pauli matrices. Then Y j = 1
2i
�j is a basis of su(2),

since [Y i, Y j] = "ijkY k.

• Then hc is given in this basis by hc(Y
j) = Lj.

• h�1
c = d(1/2).

6. Since SU(2) is simply-connected, any representation d(j) gives rise to a repre-

sentation D(j) of SU(2) according to D(j)(et(hc)�1(X)) = etd(j)(X). In particular
D(1/2), is the defining representation of SU(2) as one can show using that
the Pauli matrices are traceless and hermitian.

7. Fact: Only for integer j the representation D(j) of SU(2) can be lifted to a
representation of SO(3).
But, as we know from the previous subsection, for any j it can be lifted to
a projective representation of SO(3). In order to accommodate half-integer
spins, we need to justify that the projective representations of SO(3) corre-
spond to rotation symmetry of physical quantum systems. This will be done
later today, using that quantum states are determined up to a phase.
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8. For any j = 0, 1/2, 1, . . . and a rotation R given by the axis ~n and angle ✓
we define the Wigner functions

D
(j)
mm0(R) := hj, m|e�i✓~n· ~J(j) |j, m0i, (103)

where ~J (j) denotes here the angular momentum in the representation d(j).

9. Let us illustrate how the projective character of D(j)(R) for half-integer j
comes about: Consider a rotation R2⇡ by 2⇡ around the ~e3-axis in the j = 1/2
representation. It can be computed in two ways: First, since rotation by 2⇡
is equal to identity, we obtain D(1/2)(R) = I. On the other hand, formula
(103) gives

D(1/2)(R2⇡) = e�i2⇡
�3
2 = exp

✓
� i⇡


1 0
0 �1

�◆
=


e�i⇡ 0
0 ei⇡

�
= �I. (104)

Since we got two di↵erent results, D(1/2) is not a well defined homomorphism
SO(3) ! GL(V ) (i.e. representation). But it can still be a well defined
homomorphism SO(3) ! GL(V )/U(1) (i.e. projective representation) as
the two results di↵er only by a sign and thus belong to the same equivalence
class.

10. Any finite dimensional representation of SU(2) is completely reducible i.e.
can be represented as a direct sum of the irreducible representations D(j).
In particular, we have

D(j1) ⌦ D(j2) = �j1+j2
j=|j1�j2|D

(j). (105)

This is what is called ”addition of angular momenta”.

6.4 Symmetries of quantum theories

When studying symmetries of a quantum theory, one has to take it seriously that
physical states are defined up to a phase. Thus we consider the following setting:

1. H - Hilbert space of physical states.

2. For  2 H, k k = 1 define the ray  ̂ := { ei✓ | ✓ 2 R }.

3. Ĥ - set of rays with the ray product [�̂| ̂] := |h�| i|2.

Definition 6.1 A symmetry transformation of a quantum system is an invertible
map Û : Ĥ ! Ĥ s.t. [Û�̂|Û ̂] = [�̂| ̂]. Such transformations form a group.

Theorem 6.2 (Wigner) For any symmetry transformation Û : Ĥ ! Ĥ we can

find a unitary or anti-unitary operator U : H ! H s.t. Û ̂ = dU . U is unique
up to phase.
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Anti-unitary operators are defined as follows:

• A map U : H ! H is anti-linear if U(c1 1 + c2 2) = c1U 1 + c2U 2.

• The adjoint of an anti-linear map is given by h�|U † i = hU�| i.

• An anti-linear map is called anti-unitary if U †U = UU † = I in which case
hU�|U i = h�|U †U i = h |�i.

Anti-unitary operators will be needed to implement discrete symmetries, e.g. time
reversal. For symmetries described by connected Lie groups anti-unitary operators
can be excluded, as we indicate below.

Application of the Wigner theorem:

1. Suppose a connected Lie group G is a symmetry of our theory i.e. there is a
group homomorphism G 3 g 7! Û(g) into symmetry transformations.

2. The Wigner theorem gives corresponding unitary operators U(g). Since they
are determined up to a phase, they form only a projective representation:

U(g1)U(g2) = ei✓1,2U(g1g2). (106)

(Since G is connected, we can exclude that some U(g) are anti-unitary.
Indeed for a connected group we have g = g2

0 for some g0 2 G. Now
U(g) = e�i✓U(g0)U(g0) which is unitary no matter if U(g0) is unitary or
anti-unitary).

3. As discussed above5, for a large class of connected Lie groups G (including
SO(3) and P"

+) a projective unitary representation of G corresponds to an

ordinary unitary representation of the covering group eG

eG 3 g̃ 7! Ũ(g̃) 2 B(H). (107)

In particular, projective unitary representations of SO(3) correspond to ordi-
nary unitary representations of SU(2) and thus there is room for half-integer
spin!

5Strictly speaking, in previous sections we tacitly assumed that the representations act on
finite-dimensional vector spaces, while here H can be infinite dimensional. Fortunately, the
relevant results generalize.
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