
3 Scattering theory

The main reference for this section is [3, Chapter 16].

3.1 Setting

We consider a Wightman theory (H, U, �, �, D). Recall the key properties

1. Covariance: U(�, a)�(x)U(�, a)�1 = �(�x + a),

2. Locality: [�(x), �(y)] = 0 for (x � y)2 < 0,

3. Cyclicity of �: Vectors of the form �(f1) . . . �(fn)� span a dense subspace
in H,

where smearing with test-functions from S in variables x, y is understood in prop-
erties 1. and 2. Furthermore U(a) = eiPµaµ

and Sp P � V̄+. Today we will impose
stronger assumptions on the spectrum:

A.1. The spectrum contains an isolated mass hyperboloid Hm i.e.

Hm � Sp P � {0} � Hm � Gm̃, (28)

where Hm = { p � R4 | p0 =
�

�p2 + m2 }, Gm̃ = { p � R4 | p0 �
�

�p2 + m̃2 }
for m̃ > m. (In other words, the mass-operator

�
PµP µ has an isolated

eigenvalue m. Embedded eigenvalues can also be treated [13], but then
scattering theory is more di�cult).

A.2. Define the single-particle subspace H(Hm) as the spectral subspace of Hm.
That is, H(Hm) = �(P )H, where �(P ) is the characteristic function of Hm

evaluated at P = (P0, P1, P2, P3). We assume that U restricted to H(Hm) is
an irreducible representation of P�

+. (One type of particles).

Theorem 3.1 (Källen-Lehmann representation). For a Wightman field � with
��, �(x)�� = 0 we have

��|�(x)�(y)�� =

�
d�(M2)�+(x � y; M2), (29)

�+(x � y; M2) := �0|�(M)
0 (x)�(M)

0 (y)|0� =

�
d3p

(2�)32p0
eip(y�x), (30)

where d�(M2) is a measure on R+, p0 =
�

�p2 + M2, �(M)
0 is the free scalar field

of mass M and |0� is the vacuum vector in the Fock space of this free field theory,
whereas � is the vacuum of the (possibly interacting) Wightman theory. Further-
more, given the structure of the spectrum (28), we have

d�(M2) = Z�(M2 � m2)d(M2) + d�̃(M2) (31)

where Z � 0 and d�̃ is supported in [m̃2, �)
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We assume in the following that:

A.3. ��, �(x)�� = 0. This is not a restriction, since a shift by a constant �(x) ��
�(x) + c gives a new Wightman field.

A.4. Z �= 0 to ensure that ��1|�(x)�� �= 0 for some single-particle vector �1

(i.e. a vector living on Hm). This means that the particle is ‘elementary’
(as opposed to composite) and we do not need polynomials in the field to
create it from the vacuum. This assumption can be avoided at a cost of
complications.

3.2 Problem and strategy

Take two single-particle states �1, �2 � H(Hm). We would like to construct
vectors �out, �in describing outgoing/ incoming configuration of these two single-
particle states �1, �2. Mathematically this problem consists in finding two ‘mul-
tiplications’

�out = �1

out
� �2, (32)

�in = �1

in
� �2, (33)

which have all the properties of the (symmetrised) tensor product but take values
in H (and not in H � H). After all, we know from quantum mechanics, that sym-
metrised tensor products describe configurations of two undistinguishable bosons.

The strategy is suggested by the standard Fock space theory: With the help of
the field � we will construct certain ‘time-dependent creation operators’ t �� A†

1,t,

t �� A†
2,t s.t.

�1 = lim
t�±�

A†
1,t�, �2 = lim

t�±�
A†

2,t�. (34)

Then we can try to construct

�out = lim
t��

A†
1,tA

†
2,t�, �in = lim

t���
A†

1,tA
†
2,t�. (35)

Of course analogous consideration applies to n-particle scattering states.

Plan of the remaining part of the lecture:

• Construction of A†
t .

• Existence of limits in definitions of �out, �in.

• Wave-operators, S-matrix and the LSZ reduction formula.
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3.3 Definition of A†
t

The operators A†
t are defined in (41) below. In order to motivate this definition,

we state several facts about the free field. It should be kept in mind that we are
interested in the interacting field, and the following discussion of the free field is
merely a motivating digression.

Recall the definition of the free scalar field:

�0(x) =

�
d3p

(2�)32p0
(eipxa†(p) + e�ipxa(p)). (36)

(Here and in the following we reserve the letter p for momenta restricted to the
mass-shell i.e. p = (p0, �p) = (

�
�p2 + m2, �p). For other momenta I will use q).

There are two ways to extract a† out of �0:

1. Use the formula from the lecture:

a†(p) = i

�
d3x �0(x)

�
� 0e

�ipx (37)

Since a†(p) is not a well-defined operator (only an operator valued distribu-
tion) we will smear both sides of this equality with a test-function. For this
purpose we define for any f � C�

0 (R4)

a†(f) :=

�
d3p

(2�)32p0
a†(p)f(p), fm(x) =

�
d3p

(2�)32p0
e�ipxf(p), (38)

where the latter is a positive-energy solution of the KG equation, that is
(� + m2)fm(x) = 0. We get

a†(f) = i

�
d3x �0(x)

�
� 0fm(x). (39)

2. Pick a function h � S s.t. supp�h is compact and supp�h�Sp P � Hm. Then

�0(h) = (2�)2a†(�h), where �h(q) =
1

(2�)2

�
eiqxh(x)d4x. (40)

Now we come back to our (possibly) interacting Wightman field � and perform
both operations discussed above to obtain the ‘time dependent creation operator’

A†
t := i

�
d3x �(h)(t, �x)

�
� 0fm(t, �x), (41)

where �(h)(t, �x) := U(t, �x)�(h)U(t, �x)† = �(h(t,�x)).
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3.4 Construction of scattering states

Theorem 3.2 (Haag-Ruelle) For f1, . . . , fn with disjoint supports, the following
limits exist

�out
n = lim

t��
A†

1,t . . . A
†
n,t�, (42)

�in
n = lim

t���
A†

1,t . . . A
†
n,t� (43)

and define outgoing/incoming scattering states.

Proof. For n = 1 the expression

A†
1,t� = i

�
d3x

�
�(h)(t, �x)�

��
� 0fm(t, �x) (44)

is independent of t and thus limt±� A†
1,t(f1)� (trivially) exist. Moreover, it is a

single-particle state. Justification:

• x �� �(h)(x)� is a solution of the KG equation. This can be shown using the
Källen-Lehmann representation and the support property of �h to eliminate
the contribution from d�̃. Assumption A.1. enters here. (Howework).

• For any two solutions g1, g2 of the KG equation
�

d3x g1(t, �x)
�
� 0g2(t, �x) is

independent of t.

• We have i[Pµ, �(h)(x)] = ( �
�xµ )�(h)(x). Since Pµ� = 0, we can write

P 2�(h)(x)� = PµP
µ�(h)(x)� = �i[Pµ, i[P

µ, �(h)(x)]]�

= ��x�(h)(x)� = m2�(h)(x)�, (45)

where in the last step we used the first item above. Hence �(h)(x)� are
single-particle states of mass m.

For n = 2 we set �t := A†
1,tA

†
2,t� and try to verify the Cauchy criterion:

��t2 � �t1� = �
� t2

t1

����d�� �
� t2

t1

������d�. (46)

If we manage to show that ������ � c/� 1+� for some � > 0 then the Cauchy
criterion will be satisfied as we will have

��t2 � �t1� � c

����
1

t�1
� 1

t�2

����. (47)

(Note that we use the completeness of H here i.e. the property that any Cauchy
sequence converges).
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Thus we study ���� . The Leibniz rule gives

���� = (��A
†
1,� )A

†
2,�� + A†

1,� (��A
†
2,� )�

= [(��A
†
1,� ), A

†
2,� ]� + A†

2,� (��A
†
1,� )� + A†

1,� (��A
†
2,� )�. (48)

Since (��A
†
i,� )� = 0 by the first part of the proof, only the term with the com-

mutator above is non-zero. To analyze it, we need some information about KG
wave-packets:

• Def. For the KG wave-packet fi,m we define the velocity support as

Vi =

�
�p

p0
| p � suppfi

�
(49)

and let V �
i be slightly larger sets.

• Fact. For any N � N we can find a cN s.t.

|fi,m(�, �x)| � cN

�N
for

�x

�
/� V �

i . (50)

Due to (50), the contributions to �[(��A
†
1,� ), A

†
2,� ]�� coming from the part of the

integration region in (41) where �x
� /� V �

i , are rapidly vanishing with � . So we only
have to worry about the dominant parts:

A†(D)
i,t := i

�

�x
t �V �

i

d3x �(h)(t, �x)
�
� 0fi,m(t, �x). (51)

Since V �
1 , V �

2 are disjoint, the Wightman axiom of locality gives for su�ciently
large � .

�[(��A
†(D)
1,� ), A†(D)

2,� ]�� � cN

�N
. (52)

This concludes the proof. �

3.5 Wave operators, scattering matrix, LSZ reduction

In the following we choose h s.t. �h(p)f(p) = (2�)�2Z�1/2f(p). This can be done,
since f has compact support. After this fine-tuning, exploiting assumptions A.2,
A.3, A.4 one obtains the following simple formula for scalar products of scattering
states:

Theorem 3.3 (Haag-Ruelle) Let �out
n , (��

n�)out be as in the previous theorem.
Then their scalar products can be computed as if these were vectors on the Fock
space:

��out
n |(��

n�)out� = �0|a(fn) . . . a(f1)a
†(f �

1) . . . a†(f �
n�)|0� (53)

and analogously for incoming states.
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Let F be the symmetric Fock space. (This is not the Hilbert space of our Wightman
theory, but merely an auxiliary object needed to define the wave-operators). We
define the outgoing wave-operator W out : F � H as

W out(a†(f1) . . . a†(fn)|0�) = lim
t��

A†
1,t . . . A

†
n,t�. (54)

By Theorem 3.3 it is an isometry i.e. (W out)†W out = I. If it is also a unitary
i.e. Ran W out = H then we say that the theory is asymptotically complete that
is every vector in H can be interpreted as a collection of particles from H(Hm).
This property does not follow from Wightman axioms (there are counterexamples)
and it is actually not always expected on physical grounds. For a more thorough
discussion of asymptotic completeness we refer to [12].

The incoming wave-operator W in : F � H is defined by taking the limit
t � �� in (54). The scattering matrix Ŝ : F � F is given by1

Ŝ = (W out)†W in. (55)

If Ŝ �= I we say that a theory is interacting. If Ran W out = Ran W in, then Ŝ is a
unitary (even without asymptotic completeness).

Corollary 3.4 (LSZ reduction) [8] For f1, . . . , f�, g1, . . . gn � S with mutually dis-
joint supports, we have

�0|a(f1) . . . a(f�)Ŝa†(g1) . . . a†(gn)|0� =

�
d3k1

(2�)32k0
1

. . .
d3pn

(2�)32p0
n

f1(k1) . . . gn(pn)�

� (�i)n+�

(
�

Z)n+�

��

i=1

(k2
i � m2)

n�

j=1

(p2
j � m2)�

�
�

d4x1 . . . d4x�d
4y1 . . . d4yn ei

��
i=1 kixi�i

�n
j=1 pjyj�

���|T (�(x�) . . . �(x1)�(y1) . . . �(yn))��,

where T is the time-ordered product (which needs to be regularized in the Wightman
setting).

By analytic continuation one can relate the Green functions to Schwinger functions.
The latter can be studied using path integrals as explained in the previous lecture.
This led to a proof that for �4 in 2-dimensional spacetime Ŝ �= I [9]. It is a
big open problem if there is a Wightman theory in 4-dimensional spacetime with
Ŝ �= I.

1The notation Ŝ is used to avoid confusion with the Schwartz class S.
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