
2 Path integrals

The main references for this section are [5, Chapter 6] [6, Chapter 1].

2.1 Wightman and Schwinger functions

Consider a theory (H, U, �, �, D) of one scalar Wightman field.

• Wightman functions are defined as

Wn(x1, . . . , xn) = ��|�(x1) . . . �(xn)��. (13)

They are tempered distributions.

• Green functions are defined as

Gn(x1, . . . , xn) = ��|T (�(x1) . . . �(xn))�� (14)

Recall that T�(x1)�(x2) = �(x0
1�x0

2)�(x1)�(x2)+�(x0
2�x0

1)�(x2)�(x1). This
multiplication of distributions by a discontinuous function may be ill-defined
in the Wightman setting. Approximation of � by smooth functions may be
necessary. Then we obtain tempered distributions.

• Euclidean Green functions (Schwinger functions) are defined as

GE,n(x1, . . . , xn) = Wn((ix0
1, �x1), . . . , (ix

0
n, �xn)). (15)

The analytic continuation is justified in the Wightman setting. We obtain
real-analytic functions on R4n

�= = {(x1, . . . , xn) | xi �= xj �i �= j }, symmetric
under the exchange of variables.

The Schwinger functions are central objects of mathematical QFT based on
path-integrals. The idea is to express GE,n as moment functions of a measure µ
on the space S �

R of real-valued tempered distributions

GE,n(x1, . . . , xn) =

�

S�
R

�(x1) . . . �(xn)dµ(�). (16)

Today’s lecture:

• Measure theory on topological spaces.

• Conditions on dµ which guarantee that formula (16) really gives Schwinger
functions of some Wightman QFT. (Osterwalder-Schrader axioms).

• Remarks on construction of interacting functional measures dµ
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2.2 Elements of measure theory

1. Def. We say that X is a topological space, if it comes with a family of subsets
T = {Oi}i�I of X satisfying the following axioms:

• �, X � T ,

•
�

j�J Oj � T ,

•
�N

j=1 Oj � T .

Oi are called the open sets.

2. Example: S �
R is a topological space. In fact, given �0 � S �

R, a finite family
J1, . . . JN � SR and �1, . . . , �N > 0 we can define a neighbourhood of �0 as
follows:

B(�0; J1, . . . , JN ; �1, . . . �N)

:= { � � S �
R | |�(J1) � �0(J1)| < �1, . . . , |�(JN) � �0(JN)| < �N }. (17)

All open sets in S �
R can be obtained as unions of such neighbourhoods.

3. Def. Let X be a topological space. A family M of subsets of X is a �-algebra
in X if it has the following properties:

• X � M,

• A � M � X\A � M,

• An � M, n � N, � A :=
��

n=1 An � M.

If M is a �-algebra in X then X is called a measurable space and elements
of M are called measurable sets.

4. Def. The Borel �-algebra is the smallest �-algebra containing all open sets
of X. Its elements are called Borel sets.

5. Def. Let X be a measurable space and Y a topological space. Then a map
f : X � Y is called measurable if for any open V � Y the inverse image
f�1(V ) is a measurable set.

6. Def. A measure is a function µ : M � [0, �] s.t. for any countable family
of disjoint sets Ai � M we have

µ(
��

i=1

Ai) =
��

i=1

µ(Ai). (18)

Also, we assume that µ(A) < � for at least one A � M.

• If µ(X) = 1, we say that µ is a probability measure.

• If µ is defined on the Borel �-algebra, we call it a Borel measure.
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7. We denote by Lp(X, dµ), 1 � p < � the space of measurable functions
f : X � C s.t.

�f�p :=

� �

X

|f(x)|pdµ(x)

�1/p

< �. (19)

We denote by Lp(X, dµ) the space of equivalence classes of functions from
Lp(X, dµ) which are equal except at sets of measure zero. The following
statements are known as the Riesz-Fisher theorem:

• Lp(X, dµ) is a Banach space with the norm (19).

• L2(X, dµ) is even a Hilbert space w.r.t. �f1|f2� =
�

f̄1(x)f2(x)dµ(x).

8. The following theorem allows us to construct measures on S �
R:

Theorem 2.1 (Bochner-Minlos) Let ZE : SR � C be a map satisfying

(a) (Continuity) ZE[Jn] � ZE[J ] if Jn � J in SR

(b) (Positive definiteness) For any J1, . . . , JN � SR, the matrix Ai,j :=
ZE[Ji � Jj] is positive. This means z†Az :=

�
i,j z̄iAi,jzj � 0 for any

z � CN .

(c) (Normalisation) ZE[0] = 1.

Then there exists a unique Borel probability measure µ on S �
R s.t.

ZE[J ] =

�

S�
R

ei�(J)dµ(�) (20)

ZE[J ] is called the characteristic function of µ or the (Euclidean) generating
functional of the moments of µ. Indeed, formally we have:

(�i)n �

�J(x1)
. . .

�

�J(xn)
ZE[J ]|J=0 =

�

S�
R

�(x1) . . . �(xn)dµ(�), (21)

so the generating functional carries information about all the moments of
the measure (cf. (16) above).

9. Example: Let C = 1
��+m2 , where � = �2

(�x0)2 + · · · + �2

(�x3)2 is the Laplace

operator on R4. We consider the expectation value of C on J � SR:

�J |CJ� :=

�
d4p ¯̂J(p)

1

p2 + m2
Ĵ(p). (22)

and set ZE,C [J ] := e� 1
2 �J |CJ�. This map satisfies the assumptions of the

Bochner-Minlos theorem and gives a measure dµC on S �
R called the Gaussian

measure with covariance (propagator) C. In the physics notation:
�

F (�)dµC(�) =

�
F (�)

1

NC
e� 1

2

�
d4x �(x)(��+m2)�(x)D[�]

=

�
F (�)

1

NC
e� 1

2

�
d4x (�µ�(x)�µ�(x)+m2�2(x))D[�], (23)
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for any F � L1(S �
R, dµC). Since we chose imaginary time, we have a Gaussian

damping factor and not an oscillating factor above. This is the main reason
to work in the Euclidean setting.

2.3 Osterwalder-Schrader axioms

Now we formulate conditions, which guarantee that a given measure µ on S �
R gives

rise to a Wightman theory:

Definition 2.2 We say that a Borel probability measure µ on S �
R defines an Osterwalder-

Schrader QFT if this measure, resp. its generating functional ZE : SR � C,
satisfies:

1. (Analyticity) The function CN � (z1, . . . , zN) � ZE[
�N

i=1 zjJj] � C is entire
analytic for any J1, . . . JN � SR.

Gives existence of Schwinger functions.

2. (Regularity) For some 1 � p � 2, a constant c and all J � SR, we have

|ZE[J ]| � ec(�J�1+�J�p
p). (24)

Gives temperedness of the Wightman field.

3. (Euclidean invariance) ZE[J ] = ZE[J(R,a)] for all J � SR, where J(R,a)(x) =
J(R�1(x � a)), R � SO(4), a � R4.

Gives Poincaré covariance of the Wightman theory.

4. (Reflection positivity) Define:

• �(x0, �x) = (�x0, �x) the Euclidian time reflection.

• J�(x) := J(��1x) = J(�x) for J � SR.

• R4
+ = {(x0, �x) |x0 > 0}

Reflection positivity requires that for functions J1, . . . , JN � SR, supported in
R4

+, the matrix Mi,j := ZE[Ji � (Jj)�] is positive.

Gives positivity of the scalar product in the Hilbert space H (i.e.
��|�� � 0 for all � � 0). Also locality and spectrum condition.

5. (Ergodicity) Define:

• Js(x) = J(x0 � s, �x) for J � SR.

• (T (s)�)(J) = �(Js) for � � S �
R.
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Ergodicity requires that for any function A � L1(S �
R, dµ) and �1 � S �

R

lim
t��

1

t

� t

0

A(Ts�1)ds =

�

S�
R

A(�)dµ(�). (25)

Gives the uniqueness of the vacuum.

Theorem 2.3 Let µ be a measure on S �
R satisfying the Osterwalder-Schrader

axioms. Then the moment functions

GE,n(x1, . . . , xn) =

�

S�
R

�(x1) . . . �(xn)dµ(�) (26)

exist and are Schwinger functions of a Wightman QFT.

Remark 2.4 The Gaussian measure dµC from the example above satisfies the
Osterwalder-Schrader axioms and gives the (scalar, Hermitian) free field.

Some ideas of the proof: The Hilbert space and the Hamiltonian of the Wightman
theory is constructed as follows:

• Def: E := L2(S �
R, dµ).

• Def: AJ(�) := ei�(J) for any J � SR and (�AJ)(�) := ei�(J�).

• Fact: E = Span{AJ |J � SR}

• Def: E+ = Span{AJ |J � S(R4
+)R}, where S(R4

+)R are real Schwartz-class
functions supported in R4

+.

• Fact: �A1|A2� :=
�

(�A1)(�)A2(�)dµ(�) is a bilinear form on E+, which is
positive (i.e. �A|A� � 0) by reflection positivity. Due to the presence of � it
di�ers from the the scalar product in E .

• Def: N = { A � E+ | �A|A� = 0} and set H = (E+/N )cpl, where cpl denotes
completion. This H is the Hilbert space of the Wightman theory.

• T (t) : E+ � E+ for t � 0. It gives rise to a semigroup e�tP0 : H � H with
a self-adjoint, positive generator P0 - the Hamiltonian. Thus eitP0 : H � H
gives unitary time-evolution.

2.4 Interacting measure

Interacting measures are usually constructed by perturbing the Gaussian measure
dµC . Reflection positivity severely restricts possible perturbations. Essentially,
one has to write:

dµI(�) =
1

N
e�

�
LE,I(�(x))d4xdµC(�), (27)

where N is the normalisation constant and LE,I : R � R some function (the
Euclidean interaction Lagrangian). For example LE,I(�(x)) = �

4!�(x)4. But this
leads to problems:
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• � is a distribution so �(x)4 in general does not makes sense.
This ultraviolet problem can sometimes be solved by renormalization.

• Integral over whole spacetime ill-defined. (But enforced by the translation
symmetry).

For �4 theory in two-dimensional spacetime these problems were overcome and dµI

satisfying the Osterwalder-Schrader axioms was constructed. It was also shown
that the resulting theory is interacting, i.e. has non-trivial S-matrix. In the next
lecture we will discuss the S-matrix is in the Wightman setting.
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[16] A. Trautman, Grupy oraz ich reprezentacje z zastosowaniami w fizyce. Lecture
notes, 2011.

[17] F. Strocchi, An introduction to non-perturbative foundations of quantum field
theory. Oxford University Press, 2013.

44



[18] 0. Steinmann, Perturbative quantum electrodynamics and axiomatic field the-
ory. Springer, 2000.

[19] F. Strocchi and A. S. Wightman, Proof of the charge superselection rule in
local relativistic quantum field theory. J. Math. Phys. 15, 2198 (1974)

[20] F. Strocchi, Gauge problem in quantum field theory. Phys. Rev. 162 1429
(1967).

[21] F. Strocchi, Gauge problem in quantum field theory III. Phys. Rev. D 2 2334
(1970).

[22] R. Ferrari, L.E. Picasso and F. Strocchi, Some remarks on local operators in
quantum electrodynamics. Commun. Math. Phys. 35 25 (1974).

[23] D. Buchholz, Gauss’ Law and the infraparticle problem. Physics Letters B 174
331334 (1986).
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