
On-shell EFTs II: NRQCD

Jonathan Kley, Anca Preda, Fabian Wagner

December 15, 2020

1 Non-relativistic EFTs

Many particle physics systems in nature, e.g. the typical example of the Hydrogen atom, can be well
described using non-relativistic quantum mechanics (QM), although the fundamental framework to
describe particle interactions in nature is actually provided by relativistic QFTs. It is therefore
natural to expect, that the QFT description of such systems reproduces the QM one1 and also
reveals corrections to it. But how to recover QM from QFT? The way to do this systematically is
through the use of the concept of non-relativistic EFTs (NREFTs).
This field of EFTs focuses on the description of systems where all (massive) constituents move with
non-relativistic velocities, which e.g. applies for a variety of bound state systems. As the weak gauge
bosons are massive and predominantly responsible for decays, (somewhat) stable bound states in
nature rely on strong or electromagnetic interactions. This lead to the emergence of non-relativistic
QED (NRQED) in the 1980s and non-relativistic QCD (NRQCD) in the 1990s, which are effective
field theories of the respective full QFTs in a non-relativistic setting. Both also admit a so called
potential formulation (pNRQED or pNRQCD respectively) well applicable to bound state dynam-
ics. Their Lagrangians contain spatially non-local, but instantaneous interactions, which establish
the connection to the potential description of interactions in QM in a very accessible way.
NRQED has a number of well-established successes, e.g. the description of QED bound states such
as positronium (e−e+) or muonium (µ−e+). It is also applied in atomic and molecular physics to
study QED corrections to bound state energy levels of atoms or molecules. Recalling e.g. the fine
structure of the Hydrogen atom from undergraduate QM, NRQED provides a systematic way to
calculate the Lamb shift and Darwin term corrections.
Applications of NRQCD mostly evolve around heavy quarkonium which are QCD bound states
formed by a heavy quark and a corresponding antiquark, usually symbolically denoted by QQ̄.
Concretely, these are charmonium (called J/Ψ meson) and bottomonium (called Υ meson). Topo-
nium does not really exist as a narrow resonance in the mass spectrum, since top (anti)quarks decay
too quickly into weak gauge bosons for the bound state to form. Additionally to the description
of heavy quarkonium states, especially more recent applications include also QQ̄ production near
threshold (twice the heavy quark mass) and their decays.
Furthermore, NREFT concepts are also applied in the context of modern QFTs for dark matter, as
experimental data hints at dark matter being a weakly coupled non-relativistic quantum system.
Unfortunately, limited time will not allow us to go into more detail on any of these. Our focus
will be to understand conceptual elements of NREFTs using the example of NRQCD as it repre-
sents the more general case compared to NRQED. Applying the NREFTs to do calculations should
afterwards be (in principle) straight forward.

1If not, we are in conceptual trouble.
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2 Physical picture of non-relativistic QCD

The physical system of concern is heavy quarkonium, symbolically QQ̄, which is observed to be a
bound state, even very much hydrogen-like. Consequently, in the center-of-mass (c.o.m.) frame of
the system, the heavy quark and antiquark move with non-relativistic velocities and are almost on
shell. This motivates the introduction of a non-relativistic ”heavy quark 3-velocity” v such that
the 4-momenta of the heavy quark and antiquark, p and p̄, in the c.o.m. frame read

p =

(
mQ + E
mQv

)
, p̄ =

(
mQ + E
−mQv

)
, (1)

where E is the ”non-relativistic energy” of the heavy quark and antiquark. As they are almost
on shell, we necessarily have E ∼ mQv

2 with v = |v| � 1. As in HQET, in the EFT description
the rest energy mQ will be substracted from the total relativistic heavy (anti)quark energy. For
convenience, NRQCD is typically formulated explicitly in the c.o.m. frame of reference, making
use of the small parameter v and consequently breaking Lorentz symmetry at the level of the
Lagrangian. Notice that heavy quark non-relativistic energy and momentum scale different with v.
This will either induce intricacies in the power counting of the effective theory or lead to spatially
non-local operators in the Lagrangian as will become clearer soon.

2.1 Energy scales of QQ̄ systems

In NRQCD, four relevant and hierarchically organized energy regions are distinguished. For a
non-relativistic energy l0 and momentum l, these can be labelled in the following way:

hard (h) : l0 ∼ mQ, l ∼ mQ

soft (s) : l0 ∼ mQv, l ∼ mQv

potential (p) : l0 ∼ mQv
2, l ∼ mQv

ultrasoft (us) : l0 ∼ mQv
2, l ∼ mQv

2

Consequently, external heavy (anti)quarks are said to be potential and they are the only particles
that can be potential when on shell2. In contrast only particles with negligible masses compared
to mQ

3 can be ultrasoft when on shell4.
To understand the significance of these different energy regions further, lets draw again a parallel
to the Hydrogen atom in QM to get some intuition. As you might have done yourself in your
undergraduate studies, calculating the energy required to ionize the atom in the interaction with
an external electromagnetic field turns out to be of the ultrasoft order related to the fact that this
is also the order of the splitting between different energy eigenvalues of the atom. Similar results
are found for QQ̄ systems. It turns out that the ultrasoft scale is the typical scale of splittings
between excitations of the system and a transfer of soft order energy to the system will kick the

2(m + mQv
2)2 − (mQv)2 ∼ m2 can only hold for m ∼ mQv or higher and this is typically only fulfilled for the

heavy quarks themselves. The exception here is the charm quark in the case of bottomonium.
3Basically all particles but the heavy quarks.
4(mQ +mQv

2)2 − (mQv
2)2 −m2

Q ∼ m2
Qv

2 which is a non-negligible amount by which the heavy quark would be
off shell.
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heavy quarks off-shell and consequently destroy the bound state. Note that this implies that any
other external states than the two heavy quarks that might appear in the bound state dynamics,
e.g. gluons, have to be ultrasoft. But how does the soft region then impact bound state dynamics
as it can’t appear in external states? It enters at loop level. To see this, consider the QCD one loop
diagram shown in Figure 1 with all external heavy quarks potential and on shell. The appearing

Figure 1: Feynman diagram to demonstrate soft loop momentum contributions

loop momentum integral integral has the form∫
d4k

...

k2[(p+ k)2 −m2
Q](p+ k − p′)2[(k + q)2 −m2

Q]
. (2)

Evaluating the k0 integral, we will find e.g. a contribution from the pole k0 = ±|k|. Now we can
close the contour such that it contains the pole with the plus sign and apply the residue theorem.
We find for the contribution of this pole to the integral the expression∫

d3k
...

16|k|(p · k)(q · k)[m2
Q + (p− p′) · k − p · p′]

(3)

where k0 = |k| is understood. Decomposing the zero component of the external momenta into rest
mass and non-relativistic energy, e.g. for p as p0 = mQ +Ep, we can expand all terms in powers of
v and find the leading contribution to the integral to be∫

d3k
...

16m2
Qk

3[p · p′ −mQ(Ep + Ep′)− (p− p′) · k]
(4)

where now k = |k|. For soft k this contribution is clearly relevant and different from the other
regions, as for hard loop momenta, only the last term in the bracket is leading order, while in the
ultrasoft region only the first two are.
The last possible scale that can appear in QQ̄ systems is ΛQCD, the energy region that separates
perturbative from non-perturbative QCD. Whether non-perturbative effects of QCD can become
relevant depends on how ΛQCD compares to the scales mQv,mQv

2. We will not address any impli-
cations of possible non-perturbativity further and assume, that we are in the weak coupling regime
ΛQCD � mQv

2.
Having now established the energy regions relevant to QQ̄ systems as well as their hierarchy, there
is in general now a sequence of EFTs which can be constructed from full QCD to obtain low energy
descriptions of QQ̄, depending on which energy scales are integrated out. What is typically done
is shown in Figure 2. Q represents the heavy (anti)quark field while g stands for any of the nearly
massless fields. The round brackets contain the modes of these fields that are still present in the
respective theory. µ is the scale up to which the theory is predictive.
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Figure 2: The two step sequence of EFTs construction

In a first step, all hard modes of QCD are integrated out, resulting in NRQCD, where all interac-
tions are local. The second step consists of integrating out all soft modes and potential massless
modes. The new effective theory, called potential NRQCD, contains only potential quarks and
ultrasoft gluons and describes the physics of the QQ̄ systems below the soft mv scale. The result-
ing Lagrangian is spatially non-local because the three-momenta of potential heavy quarks are of
the same order as the soft and potential modes of the nearly massless fields, that were previously
integrated out. The name potential is in no way coincidental. As it will turn out, the matching
coefficients of non-local operators that describe heavy quark heavy antiquark interaction without
gluon emission in pNRQCD will have the valid interpretation of a QM potentials. More on this will
follow later.

2.2 Power counting

In NRQCD, the power counting of terms in the Lagrangian is different from usual EFTs. The
relevance of operators now depends on how they scale with v instead of 1/mQ. That powers of mQ

don’t matter can be seen on dimensional grounds: all energy regions defined in the subsection before
include exactly one power of mQ and this is the only dimensionful scale defining the energy regions.
Hence any operator will scale will mQ according to its mass dimension such that all possible terms
in the Lagrangian have to be of order m4

Q in the end. A difference in relevance then comes from
powers of the small parameter v. Still, higher dimensional operators are often less relevant then
lower dimensional ones as they bring at least powers of v equal to their dimension5.
Consequently, power counting in NRQCD is less straightforward than usual as the scaling of an
operator with v is ambiguous and depends on the considered energy region, e.g. a soft gluon field
scales different with v than an ultrasoft one. In pNRQCD, this problem will be no longer present
as the energy regions of fields are then uniquely specified.
For a given Feynman diagram with specification of the participating energy scales, the scaling
with v can be uniquely determined. Therefore use the following set of rules derived from the non-
relativistic energy and momentum scaling specified in the previous subsection:
The integration measure d4l scales as

• hard modes: d4l ∼ v0 ,

• soft modes: d4l ∼ v4,

• potential modes: d4l ∼ v5,

5Reminder: hard modes without powers of v are integrated out in NRQCD.

4



• ultrasoft modes: d4l ∼ v8.

In Feynman gauge, a gluon propagator with momentum (l0, l) at leading order (LO) scales as

1

l2
=


1
l2 ∼ v

0, for hard modes
1
l2 ∼ v

−2, for soft modes
−1
l2 ∼ v

−2, for potential modes
1
l2 ∼ v

−4, for ultrasoft modes

(5)

The denominator6 of a heavy quark propagator with four momentum q + l = (mQ + l0, l) goes like

1

(q + l)2 −m2
Q

=
1

2mQl0 + l2
≈


1

2mQl0+l2
∼ v0, for hard modes l

1
2mQl0

∼ v−1, for soft modes l
1

2mQl0−l2 ∼ v
−2, for potential modes l

(6)

The rules for the hard region are needed in the matching procedure for full QCD calculations
involving hard loop momenta.
Another subtlety of power counting in NRQCD is that typically v ∼ αs, which can be motivated
again by looking at QM results: Heavy quarkonium is observed to be a bound state, hence from a
non-relativistic quantum mechanics perspective, there has to be an attractive potential responsible
for this. In the QFT language, this potential corresponds to gluon exchange, which is proportional
to at least two powers of the strong coupling, g2s ∼ αs, and this has to be a relevant effect. Going
even one step further, as gluon exchange between quarks in QCD is at leading order very much
similar to photon exchange between charged particles in QED, we can assume that this potential
is at leading order Coulomb-like7. Comparing then the non-relativistic energy ∼ mQv

2 of the QQ̄
system to the energy eigenvalues of the hydrogen atom

En ∼ me
α2

n2
(7)

we can conclude v ∼ αs
8. Consequently, quantum loop effects have to be taken into account

simultaneously with the inclusion of new operators that contribute at higher orders in v when
calculating corrections to the LO terms. The full expansion of NRQCD is then simultaneously in v
and αs while αs/v is of order 1.

3 The NRQCD Lagrangian

3.1 Construction of the Lagrangian

We follow the general strategy for the construction of an EFT in order to obtain the NRQCD
Lagrangian but stay with a non-relativistic description in the c.o.m. frame. The steps involved are
the following:

1. Identification of the fields (degrees of freedom) that describe the low energy physics: the heavy
quark and antiquark, which we will describe by non-relativistic Pauli 2-spinor fields ψ and
χ, the gauge fields Aµ and the light quarks. Thereby ψ and χ carry only the non-relativistic
energy of the respective particles.

6The numerator /q + /l +mQ always goes like v0.
7This will become clearer when we will talk about potential NRQCD later.
8This is also consistent with the strong interaction being perturbative at scales of the heavy quark masses.
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2. Identification of the QCD symmetries that have to be carried over in the EFT: SU(3) gauge
symmetry, charge conjugation, parity and rotational symmetry9. Additionally, we demand
the EFT to be invariant under separate U(1) transformation of the heavy quark and anti-
quark fields as their number should be separately conserved, because heavy quark-antiquark
annihilation processes happen at the scale mQ that is integrated out.

3. Write the most general Lagrangian compatible with the symmetries, up to a certain accuracy
level: this is more delicate than in the usual construction of EFTs because of the more intricate
power counting. As argued in the chapter before, an expansion in the dimension of composite
field operators is nevertheless reasonable.

4. Each operator in the effective Lagrangian will be multiplied by a coefficient, which should be
determined by matching the EFT to full QCD.

The resulting effective Lagrangian can be structured as follows

LNRQCD = Lψ + Lχ + Lψχ + Lg + Llight (8)

where Lg contains purely gluon fields, Llight contains the light quarks and Lψχ describes heavy
quark-antiquark interactions.
The heavy quark Lagrangian is

Lψ = ψ†
(
iD0 +

D2

2mQ

)
ψ − d1gs

2mQ
ψ†σ ·B ψ +O

(
1

m2
Q

)
. (9)

which to order 1/mQ is just a copy of the HQET Lagrangian in the rest frame v = (1, 0, 0, 0). The
chromo-magnetic field B is defined such that

σ ·B = −1

2
σijGij . (10)

The heavy antiquark Lagrangian Lχ follows from the heavy quark Lagrangian by Lψ = −Lχ and
ψ → χ, iD0 → −iD0 . The gluon Lagrangian takes the form

Lg = −d4
4
GAµνG

µνA +
d5
m2
Q

GAµνD
2GµνA +

d6
m2
Q

gsf
ABCGAµνG

αBµGCνα +O

(
1

m4
Q

)
. (11)

It originates from integrating out heavy quark loops with non-hard gluon lines attached to it. The
light quark sector Llight is the same as in QCD. The LO of the heavy quark-antiquark interaction
Lagrangian consists of four fermion interactions. They read

Lψχ =
dss
m2
Q

ψ†ψχ†χ− dsv
8m2

Q

ψ†[σi, σj ]ψχ†[σi, σj ]χ+
dvs
m2
Q

ψ†TAψχ†TAχ−

− dvv
8m2

Q

ψ†TA[σi, σj ]ψχ†TA[σi, σj ]χ+ (ψ ←→ χ) +O

(
1

m3
Q

)
(12)

where ψ ←→ χ means exchanging only the ”fields to the right” to get ”annihilation order” χ†ψψ†χ
from the ”scattering order” ψ†ψχ†χ. In four space-time dimensions, they are related by a Fierz
transformation, but if we regulate our theory in dimensional regularization, they are not. Further,
we also neglected interaction terms between heavy and light quarks, such as χ†ψq̄q, as these only

9The still intact subgroup of Lorentz symmetry in the non-relativistic description in the c.o.m. frame.
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contribute to higher order effects in v than the terms shown above, because light quarks don’t
appear as external states in heavy quarkonium.
Operators that vanish on the leading order equations of motion (or equivalently can be eliminated
by field redefinitions) were excluded from LNRQCD, hence NRQCD formulated as above reproduces
only on-shell QCD Green’s functions at low energy. Consequently, the Wilson coefficients of NRQCD
should be determined by matching on-shell Green’s functions of full QCD and NRQCD.
The term bilinear in the heavy quarks field in the heavy quark Lagrangian (9) can be used to
calculate its propagator. This is straight forward and the momentum space Feynman rule reads

i

k0 − k2

2mQ
+ iε

, (13)

where k = (k0,k) is the heavy quark’s non-relativistic energy and momentum in the c.o.m. frame,
which is the residual momentum carried by the non-relativistic spinor field ψ. Its velocity-scaling
agrees with the rules deduced in subsection 2.2 as expected. For the heavy anti-quark propagator,
the sign in between the energy and momentum terms changes to a plus sign.

3.2 Velocity scaling of fields and operators

In this subsection we want to derive the leading order scaling of different operators with v (of course
depending on the respective momentum region) in order get a grasp on their relative importance.
We can get the velocity scaling of the heavy quark fields, using the power counting method described
in subsection 2.2. In NRQCD, heavy quarks can be potential or soft. We get at LO

〈Ω|T{ψ†(x)ψ(y)}|Ω〉 ≈
∫

d4p

(2π)4
i

p0 − p2

2mQ
+ iε

e−ip(x−y) ∼

{
v4 · v−1 = v3 in the soft region

v5 · v−2 = v3 in the potential region

Hence for both soft and potential modes, the heavy (anti)quark fields scale as v3/2. An analo-
gous procedure reveals that the gluon field scales as v (soft), v3/2 (potential) and v2 (ultrasoft).
Derivatives on fields scale according to the energy (for time derivatives) or momentum (for spacial
derivatives) carried by the field. Keep in mind: these rules only reflect the leading order scaling
and don’t account for subleading order contributions.
Recalling also that gs ∼ v1/2, we can now analyse the leading order scaling of the terms appearing
in equation (9), depending on the modes of the heavy quark:

• potential heavy quarks: The terms containing only derivatives in ψ†
(
iD0 + D2

2mQ

)
ψ both scale

as v5, hence, contrary to HQET, both contribute at LO. The interaction terms containing
gluons are at least of order v6 for all in NRQCD possible gluon modes10 with the exception of
the gsψ

†ψA0 interaction, which scales as v5 for potential gluons such that it has to be treated
non-pertubatively in this region. The chromo-magnetic interaction scales at least as v6 and
never contributes at LO, hence at LO NRQCD has heavy quark spin symmetry.

• soft heavy quarks: The derivative term in ψ†iD0ψ now scales as v4 while the derivative term
in D2 term still scales as v5. It can therefor be treated as a perturbation and at leading order
in an expansion in v, the heavy quark propagator then simplifies to the HQET propagator
in the rest frame. All interaction terms with gluon fields only contribute at higher order
than the leading term, independently of the gluon mode considered. They can all be treated
perturbatively.

10Note that soft gluon modes are not relevant in ψψA-type vertices with potential heavy quarks as they violate
energy conservation.
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The four quark operators in equation (12) are generated either by scattering with hard gluon ex-
change or quark-antiquark annihilation. Naively, these interactions seem to be of order v6. For
scattering with hard gluon exchange, the coefficient functions in front are all at least of order
α2
s ∼ v2 though as this can only appear at one loop order in QCD, making these terms in total at

least ∼ v8. The quark-antiquark annihilation terms can be found at tree level in QCD for colour
octet states of the QQ̄ pair11. The coefficients would then still be at least order αs ∼ v, but as
the QQ̄-system in nature has to be in a color singlet state because of confinement, all terms in
annihilation order also only contribute at higher order.
For the gluon Lagrangian, with respect to the LO term−d44 G

A
µνG

µνA, the second term d5
m2

Q
GAµνD

2GµνA

contains an extra D2 and the coefficient has to be d5 ∼ αs ∼ v. Therefore, this operators scales with
at least three extra powers of v compared to the leading term. The third term in the Lagrangian
is clearly even higher order.

3.3 Matching between QCD and NRQCD

While heavy (anti)quarks are relativistic 4-component Dirac spinor fields in full QCD, we decided
to describe them in NRQCD by separate 2-component Pauli spinor fields, that also carry only the
non-relativistic energy of the particle. In order to perform matching calculations, their relation has
to be clarified.
Denoting the external non-relativistic heavy quark and antiquark 2-spinors in NRQCD by ξ(s) and
η(s) respectively, the external heavy-quark 4-spinors of QCD in the Dirac basis of the γ-matrices
can be written as

u(p, s) =
1√

E +mQ

(
(E +mQ) ξ(s)
σ · p ξ(s)

)
, v(p, s) =

1√
E +mQ

(
σ · p η(s)

(E +mQ) η(s)

)
. (14)

for an on-shell heavy-quark 4-momentum p = (E,p) with E =
√
m2
Q + p2. The 2-spinors are

normalized according to
ξ†ξ = η†η = 1. (15)

Hence during the matching procedure, in QCD calculation the momentum dependence hidden in
the Dirac structure needs to be extracted in order to relate consistently to the NRQCD 2-spinors.
Furthermore, one has to take into account that the normalization of relativistic QCD heavy quark
states and non-relativistic NRQCD heavy quark states differ by a factor

√
2E.

Let’s see this at work for the following example: In the on-shell renormalization scheme, to all
orders in perturbation theory, the heavy quark part of the amputated on-shell two-point function
of the heavy quark field is in QCD given by

(−i) ū(p, s)(/p−mQ)u(p, s) = ... = (−i) 2E ξ†(s)ξ(s)
(
E −

√
m2
Q + p2

)
, (16)

where we plugged in the above expression for u(p, s) and skipped the steps of multiplying out the
Dirac structure. Expanding the square root, we get

(−i) ū(p, s)(/p−mQ)u(p, s) = (−i) 2E ξ†(s)ξ(s)

(
E −mQ −

p2

2mQ
+ ...

)
(17)

In the effective theory, the factor 2E result from the normalization of the heavy quark states, the
polarization vector product ξ†(s)ξ(s) follows directly and from the heavy quark Lagrangian bilinear

in the heavy quark field ψ, we get i∂0 → E − mQ, i~∂ → p, hence this checks and the Wilson
coefficients of these terms are 1 to all orders in perturbation theory.

11For singlet states, the tree level diagrams vanish due to tr(TA) = 0.
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