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1 A Brief Summary of the Main Concepts of EFTs

Let us briefly review the basic idea and concepts of EFTs. The typical situation where EFT concepts
can be applied is when there is a QFT with a large separation of scales ΛL � ΛH . In this case, the
heavy physics decouple at energies of order of the low scale ΛL and we can write down an effective
theory excluding the heavy degrees of freedom associated with the large scale ΛH . We can use this
effective theory in two ways

1.) Top-down approach: When we already know the full theory, we can use the EFT to make
some (approximate) symmetries of the theory more apparent or use tools of EFTs to improve
the convergence of perturbation theory.

2.) Bottom-up approach: When we know that our theory is valid at low energies but shows small
deviations in measurements and therefore cannot be valid at all energies, we can write down
all operators that are allowed by symmetry and use the EFT obtained in this way to find the
correct direction for a UV completion by casting the experimental deviations in the coefficients
of our effective operators.

1.1 How to Construct an EFT

There are several steps going into the construction of an EFT. As already mentioned, the system
we want to describe has to have a large separation of scales ΛL � ΛH . Then, we have to find
all symmetries and degrees of freedom that describe the system below our factorisation scale µ
(ΛL < µ < ΛH) of our EFT and construct all operators that are allowed by the symmetries of the
system. Assuming a natural scaling of our operators (of mass-dimension n) 〈On〉 ∼ ΛnL and their
coefficients Cn ∼ 1 in the Lagrangian we can write down a Lagrangian summing over the mass
dimension of the operators

L =

∞∑
n=0

Cn(µ,ΛH)
On(µ,ΛL)

Λn−4
H

(1)

where the Cn, the so-called Wilson coefficients, model the correct non-analytic IR behaviour of the
theory for the operators On made of the low-energy degrees of freedom. The Wilson coefficients
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can be related to a more fundamental theory by matching or obtained by fitting to data.
We effectively expanded our Lagrangian in the parameter

λ =
ΛL
ΛH

(2)

which is called the power counting of the EFT. In calculations we can choose our desired accuracy
in λ and the power counting tells us which operators from the Lagrangian we have to keep in order
to obtain this accuracy.

1.2 Matching

The process of matching is often also referred to as integrating out the heavy particles of a system.
During the matching process we relate the Wilson coefficients of our EFT to a more fundamental
theory or fit them to data. After doing this the theory will correctly model the behaviour of our
full theory at low energies without including the heavy degrees of freedom. During the matching
procedure we usually pick out one process for which we calculate the renormalized on-shell amplitude
iMfull/EFT in the EFT and the full theory and equate them at a matching scale ΛM

iMfull(ΛM ) = iMEFT(ΛM ) (3)

For a given accuracy in the power counting of our EFT, we have then obtained a theory with a
finite number of parameters which assures the predictive power of the EFT.
If we are only interested in the tree-level accuracy of our theory, we can also integrate out the
heavy particles by using the classical equations of motion of our theory. E.g., for a theory with
a light particle φ and a heavy particle Φ, we can calculate the equations of motion for our heavy
field δS

δΦ (φ) = 0 1 and formally solve them Φ = f(φ). Plugging this back into the Lagrangian of the
system gives us the tree-level matched Lagrangian of the EFT

Ltree
EFT = L(φ,Φ = f(φ)) (4)

1.3 The Renormalization Group Equation

The Lagrangian in eqn. (1) seems to be non-renormalizable because it contains operators with
negative mass dimension and we therefore have to keep adding operators of higher mass dimension
to cancel all UV divergences in the theory. That is where the power counting of the theory comes
into play. For a given accuracy in terms of the power counting λn, we have a finite number of terms
in our Lagrangian. Now, if we e.g. want to calculate up to dimension 6 in the mass dimension and
insert two of these dimension 6 operators in an amplitude, we would have to add a dimension 8
operator to cancel this divergence. However, this is already below our accuracy, so we can neglect
it. So, an EFT is renormalizable order by order in its power counting expansion.
We can then derive the RGE of our theory. For a set of operators mixing under renormalization

we have O(0)
i = ZijOj . Unlike the bare operators, the renormalized operators depend on the

subtraction scale via

µ
d

dµ
Oi =

(
µ
d

dµ
Z−1
ij

)
O(0)
j ≡ −γijOj (5)

1where S =
∫
d4xL(φ,Φ) is the classical action of our system

2



where we have defined the anomalous dimensions of the operators

γik = Z−1
ij µ

dZjk
dµ

(6)

With this we can also derive an anomalous dimension for the couplings of our operators. Our EFT
Lagrangian must be independent of the subtraction point µ

0 = µ
d

dµ
(CiOi) =

(
µ
d

dµ
Ci

)
Oi + Ci

(
µ
d

dµ
Oi

)
=

(
µ
d

dµ
Ci

)
Oi − CiγijOj (7)

where we have used the definition of the anomalous dimension in the last step. We then get

µ
d

dµ
Ci = γjiCj (8)

Solving this differential equation we can calculate the scale dependence of the Wilson coefficients.

Alongside the usual matching procedure, this can be used to resum terms like g2

16π2 log
Λ2
H

Λ2
L

which

can appear in the fundamental theory.

1.4 On-Shell EFTs

There are certain classes of theories where a large separation of scales is given but the heavy d.o.f.s
cannot be completely integrated out because they still appear in the external states of the theory.
This can happen in strongly coupled theories where the heavy degrees of freedom appear together
with light degrees of freedom in bound states, like a meson with a light and heavy quark. Even
though we cannot completely integrate out the particle associated with the large scale from the
theory, we can still integrate out the heavy scale and have the heavy degree of freedom appear in
external states. We can do this for very heavy but also massless energetic particles for which we
can decompose the momentum in

pµ = mvµ + kµ or pµ = Enµ + kµ (9)

where k is a soft fluctuation around the large scale m,E. These kind of theories are called on-shell
EFTs and we will explore them further in the following, starting with the aforementioned example
and the corresponding EFT, the Heavy Quark Effective Theory (HQET).

2 Motivation of HQET

The quarks of the Standard Model fall into two categories: light quarks q (up, down, strange) for
which mq � ΛQCD and heavy quarks Q (charm, bottom, top)2 with mQ � ΛQCD. The scale
ΛQCD ∼ 200MeV separates the regions of large and small effective QCD coupling constant αs,
thus for heavy quarks the strong interaction can be treated perturbatively.
HQET is an EFT of QCD which describes interactions in hadrons containing a heavy quark Q and
other light constituents. The typical momenta exchanged between Q and these constituents via soft

2Of particular interest to us will be the charm and bottom quarks, since the top quark decays to quickly to form
bound systems with light quarks.
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gluons are of order ΛQCD. Since ∆v = ∆p
mQ

, the velocity of the heavy quark v is almost unchanged

by these strong interactions and becomes a conserved quantity in the heavy quark limit mQ →∞.
Furthermore the soft degrees of freedom can only probe scales of l ∼ ΛQCD and therefore cannot
resolve the quantum numbers of the heavy quark.
HQET is constructed in such a way that it reproduces QCD predictions at energies below some
separation scale µ chosen such that ΛQCD � µ� mQ. This is illustrated in Figure 1. In contrary
to typical EFTs, in HQET the heavy quark can not be completely removed from the theory as it
still appears as an external state. However, its spinor contains components that can be integrated
out, as we will see in the following.

Figure 1: Energy scales for the full theory (QCD) and the effective theory (HQET)

3 The HQET Lagrangian and Its Features

3.1 HQET Lagrangian

One important observation in the construction of the HQET Lagrangian is that the heavy quark
bound inside the hadron moves more or less with the hadron’s velocity v and it is almost on shell.
Thus the momentum of the off-shell heavy quark can be written as

pµQ = mQv
µ + kµ, (10)

where v2 = 1 and k ∼ ΛQCD is the residual momentum, much smaller than mQ. With this
decomposition the fermion propagator of a heavy quark becomes

i

/p−mQ
=
i(/p+mQ)

p2 −m2
Q

= i
mQ/v + /k +mQ

m2
Q + 2mQv · k + k2 −m2

Q

=
1 + /v

2

i

v · k
+O(1/mQ) (11)
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and the heavy-quark-gluon vertex is modified to

i

/p−mQ
(−igT aγµ)

i

/p
′ −mQ

=
i

v · k
1 + /v

2
(−igT aγµ)

1 + /v

2

i

v · k′
+O(1/mQ) =

=
1 + /v

2

i

v · k
(−igT avµ)

1 + /v

2

i

v · k′
+O(1/mQ) (12)

where we used
1+/v

2 γµ
1+/v

2 =
1+/v

2 vµ
1+/v

2 which can be easily proven with the Clifford algebra and

the fact that
1+/v

2 is a projector. This motivates the following decomposition of the heavy quark
field Q(x) into a large and small component field

hv(x) = eimQv·xP+Q(x), (13)

Hv(x) = eimQv·xP−Q(x). (14)

which satisfy /vhv = hv and /vHv = −Hv. The projection operators P± are defined as P± =
1±/v

2 . The
exponential factor in the definition of hv and Hv subtracts an amount mQv from the heavy quark

momentum such that they only carry the residual momentum k. In the rest frame (vµ = (1,~0)),
hv corresponds to the upper two components of Q, while Hv corresponds to the lower components.
The field hv annihilates a heavy quark whereas Hv creates a heavy antiquark. The heavy quark
field can then be written as

Q(x) = e−imQv·x [hv(x) +Hv(x)] . (15)

With this we can rewrite the QCD Lagrangian for a heavy quark

LQ = Q̄(i /D −mQ)Q. (16)

In terms of the component fields, equation (16) yields

LQ = h̄viv ·D hv − H̄v(iv ·D + 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (17)

where Dµ
⊥ = Dµ − vµ v · D is orthogonal to the heavy quark velocity: v · D⊥ = 0. We also used

/vhv = hv and /vHv = −Hv which immediately follows from the definition of hv and Hv. Looking
at the Lagrangian we can see that hv describes massless degrees of freedom, whereas Hv describes
massive ones. The third and fourth terms correspond to pair creation and annihilation of heavy
quarks and antiquarks.
At tree level, the massive Hv can be integrated out via the equations of motion (EOM)3.The EOM
for Hv is straightforward

(iv ·D + 2mQ)Hv = i /D⊥ hv, (18)

and the formal solution to this reads

Hv =
1

iv ·D + 2mQ
i /D⊥ hv. (19)

Inserting equation (19) back into equation (17) results in the following non local effective Lagrangian

Leff = h̄viv ·D hv + h̄vi /D⊥
1

iv ·D + 2mQ
i /D⊥ hv. (20)

3Another way to see why we should integrate out the Hv field is that it corresponds to the antiquark field. For
the description of a hadron containing only one heavy quark at energies below its mass, we don’t need the anti-quark
as it only appears in pair creation/annihilation processes which can’t be resolved at the low scale.
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In momentum space, the derivative acting on hv produces powers of the residual momentum k,
which is much smaller than mQ. Moreover, the gluon field Aµ is in HQET implicitly reinterpreted
as a soft gluon field Aµsoft which can only carry momenta of order ΛQCD. Consequently, the second
term can be expanded to obtain

Leff = h̄viv ·D hv +
1

2mQ

∞∑
n=0

h̄vi /D⊥

(
− iv ·D

2mQ

)n
i /D⊥ hv. (21)

The first term in the sum can be rewritten using

i /D⊥ i /D⊥ =
[
(iD⊥)

2
+
gs
2
σµνG

µν
]
, (22)

such that the Lagrangian becomes

Leff = h̄viv ·D hv +
1

2mQ
h̄v(iD⊥)2hv +

gs
4mQ

h̄vσµνG
µνhv +O

(
1

m2
Q

)
. (23)

The operators at order 1/mQ are called the gauge-covariant extension of the kinetic energy arising
from the residual motion of the heavy quark and the chromo-magnetic interaction, which describes
the coupling of the heavy quark spin to the gluon field. In the heavy quark limit mQ → ∞ we
arrive at

L0 = Leff

∣∣∣
mQ→∞

= h̄viv ·D hv. (24)

We can also eliminate Hv from the quark field Q(x) = e−imQv·x [hv(x) +Hv(x)] by using the
equation of motion

Q(x) = e−imQv·x

[
hv(x) +

1

2mQ

∞∑
n=0

(
− iv ·D

2mQ

)n
i /D⊥ hv

]
(25)

which allows us to write down all currents of the form q̄ΓQ (where Γ denotes some Lorentz structure)
which we e.g. need to describe the decays of mesons in HQET.
One thing that is also worth being noted is the different renormalization of states in HQET. The
usual normalization of a hadron state |H(p)〉 in QCD is

〈H(p′)|H(p)〉 = 2Ep(2π)3δ(3)(p− p′) (26)

In HQET our states are labeled by a velocity v and the residual momentum k so its convenient to
chose the normalization

〈H(v′, k′)|H(v, k)〉 = 2v0δvv′(2π)3δ(3)(k − k′) (27)

which means for the states for k = 0: |H(p)〉 =
√
mH (|H(v)〉+O(1/mQ)).

3.2 Heavy Quark Spin-Flavour Symmetry

Similar to the SU(3)L × SU(3)R chiral symmetry in QCD, which is an approximate symmetry
taken in the mq → 0 limit of the light quarks (u, d, s) the above Lagrangian also has a symmetry
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but here in the mQ →∞ limit for the heavy quarks (c, b, t). This symmetry is called spin-flavour
symmetry which unlike chiral symmetry is not a symmetry of QCD but only of the effective theory
we constructed.
We can now generalise equation (24) to Nh flavours which simply gives

LNh0 =

Nh∑
f=1

h̄fv iv ·D hfv . (28)

This Lagrangian obviously has a U(Nh) flavour symmetry. Combined with the SU(2) spin symmetry
this Lagrangian also has at leading order for each flavour, we arrive at the U(2Nh) heavy quark
spin-flavour symmetry. This symmetry is only exact in the heavy quark limit and is broken by
adding 1/mQ corrections to the leading order Lagrangian. The flavour symmetry is broken by
terms like 1/mQi − 1/mQj , where indices i, j label two different flavours. The spin symmetry is
explicitly broken by the dipole operator which couples the quark spin to the gluon field.

3.3 Reparametrization Invariance

The HQET Lagrangian admits at order 1/mQ an additional symmetry resulting from the fact that
the decomposition of the heavy-quark momentum,

pµQ = mQv
µ + kµ, (29)

is not unique. A small change in the heavy quark velocity of order ΛQCD/mQ can be absorbed by
the opposite change in the residual momentum k

v → v′ = v +
ε

mQ
, k → k′ = k − ε (30)

where ε is 4-vector of order ΛQCD that satisfies v · ε = 0 such that v′2 = 1 up to terms of order
(ΛQCD/mQ)2. Demanding that /vhv = hv still holds at order (ΛQCD/mQ) after the reparametriza-
tion, also the heavy quark field hv has to transform such that

/v
′h′v′ = h′v′ (31)

holds for h′v′ = hv + δhv the transformed heavy-quark field at order (ΛQCD/mQ). Plugging in the
expression for v′, we find

hv + δhv =

(
/v +

/ε

mQ

)
(hv + δhv) = hv +

/ε

mQ
hv + /vδhv +O(1/m2

Q) (32)

Then a suitable choice for δhv satisfying /vδhv = −δhv is

δhv =
/ε

2mQ
hv. (33)

Also adding the change in the residual momentum, we find the reparametrization transformation

v → v +
ε

mQ
, hv → eiε·x

(
1 +

/ε

2mQ

)
hv. (34)
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The leading order HQET Lagrangian (24) transforms as

L0 → L0 +
1

mQ
h̄viε ·D hv +O

(
1

m2
Q

)
, (35)

while at the sub-leading order, the chromo-magnetic interaction is invariant up to order 1/m2
Q and

the gauge-covariant extension of the kinetic energy changes as

L1 → L1 −
1

mQ
h̄viε ·D hv +O

(
1

m2
Q

)
, (36)

hence at order 1/mQ the HQET Lagrangian is reparametrization invariant. This also has one further
very important implication which will be useful when we renormalize the first power correction to
the Lagrangian. Reparametrization invariance is only valid if the leading order Lagrangian and
the covariant extension of the kinetic energy have the same coefficient. This is a non-trivial result
because it connects terms in the Lagrangian with different power countings.

4 Renormalization of HQET

The HQET Lagrangian we derived so far is only valid at tree-level. If we also want to include
radiative corrections we have to renormalize both the full and the effective theory and do the
matching at loop order. The quantities appearing in the effective Lagrangian are bare quantities -
denoted by superscript 0. The renormalized heavy quark field is

hv =
1√
Zh

h(0)
v . (37)

with ε defined by d = 4−ε and µ is the usual dimensionful parameter of dimensional regularization.
We can do the same for the light fields and the coupling in the theory

q =
1√
Zq
q(0) Aµ =

1√
ZA

A(0)
µ g =

1

Zg
µ−ε/2g(0) (38)

In the effective theory, all loops including only heavy quarks vanish. A heavy quark loop would
look like

i

v · q + iε

i

v · (k − q) + iε
(39)

Figure 2: One loop correction to the heavy quark propagator
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where q is the loop momentum. However, this only has two poles in k0, both below the real k0

axis. Therefore, the contour integral can be closed in the upper half plane and it is zero.
Physically this can be seen by remembering that the field hv annihilates a heavy quark, while the
field Hv which would create the corresponding heavy antiquark has been integrated out. As a
consequence, the heavy quarks do not influence the renormalization of the light constituents, the
gluon or of the coupling constant and they are the same as in full QCD below the mass scale of the
heavy quark we integrate out.
We can rewrite the effective Lagrangian in terms of renormalized quantities

Leff = h̄viv ·D hv + (Zh − 1)h̄viv ·D hv (40)

Now we are ready to calculate the renormalization constant for the heavy quark field from the
heavy quark self energy diagram in Figure 2. The diagram in Feynman gauge reads∫

ddq

(2π)d

(
−igTAµε/2vµ

) i

v · (q + k)

(
−igTAµε/2vν

) −igµν
q2

= ... = − ig2

3π2ε
v · k + finite (41)

with q the loop momentum and k the external residual momentum4. The loop integral is both UV
and IR divergent. We skipped all of the computational steps where we regulate the IR divergence
(done by the introduction of gluon mass that is set to zero at the and of the calculation) and do
the usual Wick rotation and Feynman parameterization to solve the integral. Then we can add
the counter term to extract the UV divergence and calculate the wave function renormalization
constant. In the MS scheme we get

Zh = 1 +
g2

3π2ε
, (42)

while in the on shell scheme (corresponding to setting k = 0) the above integral is scaleless and
trivially vanishes in dimensional regularization such that

ZOSh = 1 (43)

and this will hold to all orders in perturbation theory.

Detour: From QCD to HQET on the Integral Level
We can also evaluate the integral we just calculated starting from the full integral in QCD. Ignoring
constants we get∫

ddq

(2π)d
γµ

/q + /p+mQ

(q + p)2 −m2
Q

γµ
1

q2
=

∫
ddq

(2π)d
γµ

/q +mQ(1 + /v)

q2 + 2mQv · (q + k) + 2q · k
γµ

1

q2
(44)

where we used p = mQv+k and k � mQ. We can expand this integral in two regions, for q2 � m2
Q

and q2 � m2
Q. Let us start with the first case, the soft gluon region. The integrand then reads

γµ
mQ(1 + /v)

2mQv · (q + k)
γµ

1

q2
= (P+ + P−)γµP+γµ(P+ + P−)

1

v · (q + k)q2
= P+

1

v · (q + k)q2
(45)

4Reminder: we subtracted in the definition of the heavy quark field hv an amount mQv from its momentum.
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where we used P±γ
µP± = ±vµP± and the other combinations vanish. We can ignore the P+ in the

last line because trivially, P+hv = hv. This is the integrand we get from the HQET Feynman rules.
Now, let us have a look at the other limit, which is the hard gluon region. Here, the integrand is

γµ
/q +mQ(1 + /v)

q2 (1 + [2mQv · (q + k) + 2q · k] /q2)
γµ

1

q2
= (46)

=γµ
1

q4

[
/q +mQ(1 + /v)

] [
1− 2mQv · (q + k) + 2q · k

q2

]
γµ +O

(
1

q6

)
= (47)

=
1

q4
γµ
[
mQ(1 + /v)− 2

(mQv + k) · q
q2 /q

]
γµ +O

(
1

q6

)
= (48)

=
2

q4

[
mQ(2− /v) + 2

(mQv + k) · q
q2 /q

]
+O

(
1

q6

)
(49)

where we threw away odd terms in q in the second to last step and used the Clifford algebra in the
last step. The second term gives a 1/ε pole and contributes to the heavy quark field renormalization
in full QCD. This shows that the heavy quark field is differently renormalized in HQET and full
QCD.

5 1-Loop Matching of HQET

The effective HQET Lagrangian

Leff = h̄viv ·D hv +
1

2mQ
h̄v(iD⊥)2hv +

gs
4mQ

h̄vσµνG
µνhv +O

(
1

m2
Q

)
. (50)

was derived in Section 3 via the use of the EOM for the small component field Hv. It gives the
Wilson coefficients of the HQET operators only at tree level. To determine the corrections coming
from quantum loops, a matching calculation between full QCD and HQET is required.
In general, a proper matching calculation in the construction of an EFT requires that the EFT
Lagrangian contains all operators compatible with the demanded symmetries5. Let’s check that
this is the case for (50) before we start calculating the loop corrections.

5.1 Completeness of the (Sub-)Leading HQET Operator Basis

Our degrees of freedom in HQET are described by the heavy quark field hv and the soft gluon field
Aµ which are our building blocks to construct the EFT. The gluon only couples to the quark fields
via the covariant derivative and we can also write down the gluon field strength in term of the
covariant derivative Gµν = (igs)

−1[Dµ, Dν ]. So we only have to include the covariant derivative
to include the gluon in our theory. Furthermore the dual field strength tensor is forbidden by
invariance of our Lagrangian under parity transformations.
Because of Lorentz invariance the heavy quark field always has to appear with its conjugate which
together has mass dimension [h̄vhv] = 3. The two vectors we can contract the covariant derivative

5For the case of HQET, we require Lorentz invariance, gauge invariance, parity invariance, reparametrization
invariance and at leading order spin-flavour symmetry.
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with are γµ and vµ. Both contractions turn out to be equivalent

h̄vi /Dhv =
1

2
h̄vi(/v /D + /D/v)hv = h̄v(iv ·D)hv. (51)

The only other renormalizable term we can write down is a residual mass term

Lδm = −δm h̄vhv (52)

In our definition of the momentum decomposition we chose the heavy quark mass to be the physical
mass and therefor δm = 0. If we chose for example the MS mass, the residual momentum k would
have to correct for the additional piece of order αsmQ which would spoil our power counting of

k ∼ ΛQCD
mQ

. As we have seen above, in the on-shell scheme the integral contributing to a mass

correction is scaleless, so δm can also not be reintroduced by quantum corrections.
This covers all possible terms for renormalizable terms in our Lagrangian. Let us now go to the
subleading order in our power expansion. Here we can use the EOM to eliminate redundant terms
from our Lagrangian. The leading order EOM obtained by the variation of (50) with respect to h̄v
is

(v ·D) hv = 0. (53)

It restricts the set of possible operators at sub-leading order further as operators that vanish by
the EOM do not contribute to on-shell Green’s functions. Consequently it justifies the replacement
D → Dµ

⊥ = Dµ − vµ v ·D in operators at sub-leading order.
At sub-leading order, the only contributing operator structure of mass dimension 5 is h̄v /D⊥ /D⊥hv
as exploiting once again /vhv = hv we can show that e.g. the following operator doesn’t contribute

h̄vv ·D /Dhv =
1

2
h̄vv ·D(/v /D + /D/v)hv = h̄v(v ·D)2hv. (54)

which is zero by the equations of motion. Using the identity we also used earlier this gives the same
Lagrangian we already found by integrating out Hv at tree level using the equations of motion.
Now we can add general coefficients in front of these operators and see how quantum corrections
change the tree-level Wilson coefficients.

5.2 Radiative Corrections to the Subleading Wilson Coefficients

We split the Lagrangian (50) we got from the tree level matching into three parts

Leff = L0 + Lkin + Lmag, (55)

where L0 is the leading order term as in equation (24) and

Lkin =
1

2mQ
h̄v(iD⊥)2hv ≡

1

mQ
Okin, (56)

Lmag =
gs

4mQ
h̄vσµνG

µνhv ≡
1

mQ
Omag. (57)

The soft degrees of freedom will change the EFT at loop-level which we have to account for by
introducing general coefficients in front of the operators

Lkin =
Ckin(µ)

mQ
Okin, Lmag =

Cmag(µ)

mQ
Omag. (58)
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Now, the power of reparametrization invariance comes into play. For the Lagrangian with general
Wilson coefficients the transformations up to O(1/m2

Q) are

L0 → L0 +
1

mQ
h̄v(iε ·D)hv (59)

Lkin → Lkin −
Ckin

mQ
h̄v(iε ·D)hv, Lmag → Lmag. (60)

If we want this to be invariant we need
Ckin = 1 (61)

This is true to all orders in perturbation theory and shows the power of reparametrization in-
variance which relates the Wilson coefficients of operators with different power counting. Had we
constructed the Lagrangian up to order 1/m2

Q and required our Lagrangian to also be invariant
under reparametrization invariance to this order, we would have found non-trivial relations between
Wilson coefficients up to order 1/m2

Q.
The only the Wilson coefficient getting non-trivial loop corrections is the one of the chromo-magnetic
interaction. For this, we will now do the matching of this Wilson coefficient to QCD. The matrix
element under consideration is the Green’s function of two heavy quarks in a background gluon
field A. We write the amplitude as

iM = iµεgsε
∗a
µ ūhΓµT auh (62)

where the two heavy quarks are taken on-shell and we continue working at precision 1/mQ. Before
we can start with the calculation we first have to figure out which part of the full QCD quark
spinor we have to keep in HQET. This is easily done by looking at the expansion of the quark field

Q(x) = e−imQv·x
(

1 + i /D
2mQ

+O(1/m2
Q)
)
hv giving

uQ(pQ, s) =

(
1 +

/k

2mQ

)
uh(v, s) +O

(
1/m2

Q

)
(63)

In full QCD, the contributing diagrams are given in Figure 3. The first diagram gives the tree level

Figure 3: Diagrams needed for the computation of the heavy quark-gluon vertex in QCD
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contribution

ΓµQCD,0 =

(
1 +

/k − /p
2mQ

)
γµ
(

1 +
/k

2mQ

)
+O

(
1

m2
Q

)
=

= vµ +
(2k − p)µ

2mQ
+

[γµ, /p]

4mQ
+O

(
1

m2
Q

) (64)

where we used that γµ can be replaced by vµ in between HQET spinors6. Using dimensional
regularization for IR and UV divergencies7, the one loop contribution from the second and third
diagram is in the MS scheme

ΓµQCD,1 = ... = −
[γµ, /p]

4mQ

3αs
2π

(
log

mQ

µ
− 13

9

)
+O

(
1

m2
Q

)
. (65)

In HQET, we only have to calculate at tree level as all heavy quark loops vanish in dimensional
regularization. The three operators in the effective Lagrangian up to mass dimension 5 give

ΓµHQET = vµ +
(2k − p)µ

2mQ
+ Cmag(µ)

[γµ, /p]

4mQ
+O

(
1

m2
Q

)
. (66)

The second term comes from Okin, showing parameterization invariance at work. By equating the
two on-shell amplitudes we get

ΓµHQET = ΓµQCD,0 + ΓµQCD,1 (67)

By comparison we obtain the one loop result for the chromomagnetic interaction

Cmag(µ) = 1− 3αs
2π

(
log

mQ

µ
− 13

9

)
+O

(
1

m2
Q

)
. (68)

It contains the logarithm log
mQ
µ which becomes large for µ� mQ which is exactly the energy regime

one is interested in in HQET. Here, we can use the powerful tool of the RGE to exponentiate this
large logarithm. The chromo-magnetic operator doesn’t mix under renormalization as it is the only
operator that gets renormalized at order 1/mQ. Thus equation (8) becomes

µ
d

dµ
Cmag(µ) = γmagCmag(µ). (69)

Expanding the anomalous dimension γmag in the renormalized coupling constant

γmag = γ0
αs
4π

+O
(
α2
s

)
(70)

and plugging in our result (68), we obtain γ0 = 6. With this result we can solve (69) by using the
chain rule

µ
d

dµ
= µ

∂

∂µ
+ β(gs)

∂

∂gs
, (71)

6Remember
1+/v
2
γµ

1+/v
2

=
1+/v
2
vµ

1+/v
2

from section 3.
7The three-gluon vertex cannot be regulated by a gluon mass in a gauge-invariant way.
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where β(gs) = µdgsdµ = −β0
g3s

16π2 +O(g5
s) is the QCD beta function of the running strong coupling

gs. This yields the formal solution

Cmag(µ) = U(mQ, µ)Cmag(mQ) (72)

where

U(mQ, µ) = exp

 gs(µ)∫
gs(mQ)

dg′s
γmag(g′s)

β(g′s)

 =

(
αs(mQ)

αs(µ)

) γ0
2β0

+O(αs) (73)

and the second equality is a result of a perturbative solution of the integral. Equation (68) yields
for µ = mQ the result

Cmag(mQ) = 1 +
13αs
6π

. (74)

Hence we find for the Wilson coefficient of the chromo-magnetic interaction the one-loop result

Cmag(µ) =

(
αs(mQ)

αs(µ)

) 3
β0
(

1 +
13αs
6π

)
(75)

and the large logarithm has been resummed.

6 Applications of HQET

6.1 Hadron Mass Splitting

One of the more straightforward applications of HQET are its implications on the mass splitting of
hadrons which lie in the same spin multiplet, e.g. the B and B∗ meson. We start with the 1/m0

Q

order Lagrangian

L0 = h̄viv ·Dhv + q̄i /Dq − 1

4
GaµνG

µν,a = −H0 (76)

for the heavy quarks and the massless QCD Lagrangian for the light quark flavours and the gluons.
Then, at leading order in the heavy quark mass expansion we have 8

mH −mQ = Λ̄ +O
(

1

mQ

)
(77)

where the heavy quark spin-flavour symmetry assures that all hadrons in the same spin multiplet
have the same mass as their heaviest quark. Λ̄ is the non-perturbative correction coming from H0

given by

Λ̄ ≡ 〈H
(Q)|H0|H(Q)〉
〈H(Q)|H(Q)〉

(78)

where |H(Q)〉 is the hadron state in the effective theory at rest and the 1/2 accounts for the nor-
malization of the hadron states. Since Λ̄ describes the influence of the soft degrees of freedom, it
will be the same for all particles in the same spin multiplet. We also assumed an SU(3) flavour

8The hadron mass in the effective theory is mH −mQ because we subtracted mQ from all energies in the field
definition 15.
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symmetry for the light quarks, such that Λ̄u,d,s = Λ̄.
Next, we want to calculate corrections to the hadron masses coming from the order 1/mQ La-
grangian

L1 = −h̄v
D2
⊥

2mQ
hv + gCmag(µ)h̄v

σµνG
µν

4mQ
hv = −H1 (79)

From this we can again define two non-perturbative matrix elements

2λ1 = −〈H
(Q)|h̄vD2

⊥hv|H(Q)〉
〈H(Q)|H(Q)〉

(80)

4 (SQ · Sl)λ2(mQ) = −Cmag(µ)
〈H(Q)|h̄vgσµνGµνhv|H(Q)〉

〈H(Q)|H(Q)〉
(81)

where λ1 does not depend on mQ, while λ2 depends on mQ through the scale dependence of
Cmag(µ). Similarly to the fine structure splitting in atoms, where the magnetic fields couples the
angular momentum of the electron to its spin via its dipole interaction, here the chromomagnetic
field of the heavy quark couples the spin of the light system in the hadron to the heavy quark via
the chromomagnetic dipole interaction. This gives rise to the spin structure SQ ·Sl in the definition
of λ2. Using SQ · Sl =

(
J2 − S2

Q − S2
l

)
/2, we find 9

mB,D = mb,c + Λ̄− λ1

mb,c
− 3λ2(mb,c)

mb,c
(82)

mB∗,D∗ = mb,c + Λ̄− λ1

mb,c
+
λ2(mb,c)

mb,c
(83)

mΛb = mb + Λ̄Λ −
λΛ,1

mb
(84)

mΣb = mb + Λ̄Σ −
λΣ,1

mb
− 4λΣ,2(mb)

mb
(85)

With the expressions from above we find that the dipole operator is responsible for the mass splitting
in the B −B∗ system. With the observed value of the mass splitting we find λ2(mb) = 0.12 GeV2.
We also find

0.49 GeV2 ' m2
B∗ −m2

B ' 8λ2 ' m2
D∗ −m2

D ' 0.55 GeV2 (86)

which is approximately the same at order 1/mb,c ignoring the weak dependence of λ2 on the heavy
quark mass. It seems like we haven’t gained a lot by deriving these relations for the masses, however
the matrix elements which appear in the masses of the hadrons also appear in other observables.
So, after we fix the values of λ1,2 with the mass differences as we did above, we can use them to
make predictions for other observables in the theory.
We can go even one step further by noticing that the quadratic difference in the meson masses
only depends on the matrix element of the dipole interaction. Since we calculated the one-loop

correction to this in the last section we can also calculate the ratio R =
m2
B∗−m

2
B

m2
D∗−m

2
D

of the quadratic

difference in the quark masses which is also known from experiment. With what we just calculated
we get

R =
m2
B∗ −m2

B

m2
D∗ −m2

D

=
Cmag(mb/µ)

Cmage(mc/µ)
+O(1/mQ) (87)

9In the parton model we can identify: |B〉 = |db̄〉, |D〉 = |cū〉, |Λb〉 = |udb〉, |Σb〉 = |udb〉. |Λb〉 has I(JP ) =
0(1/2+), while |Σb〉 I(JP ) = 1(1/2+).
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for N = 3 colours and nf = 4 light flavours

R =

(
αS(mb)

αS(mc)

) 9
25
(

1− 7921

3750

αS(mc)− αS(mb)

π

)
+O(1/mQ) (88)

where the second term in the bracket corresponds to the two-loop correction of the anomalous
dimension of the magnetic dipole operator.
For αS(mb) = 0.22 and αS(mc) = 0.36, we get Rtree = 1, R1−loop ' 0.84 and R2−loop ' 0.76
which is close to the experimental value Rexp = 0.89 ± 0.01. It seems like our prediction gets
worse and worse if we go to higher loop order. But at this precision we also have to include higher
order in our power expansion to get a complete result. If we estimate the subleading correction as

ΛQCD

(
1
mc
− 1

mb

)
we find again agreement with the experimental result.

6.2 Semi-leptonic Decays (if time allows)

Probably the most important application of HQET are semi-leptonic decays of hadrons. We will
only briefly sketch the calculations here, because they are very lengthy and focus on the decay
B̄ → D(∗)eν̄e. We can describe these decays with the electroweak Hamiltonian

HW =
4GF√

2
Vcb (c̄γµPLb) (ēγµPLνe) (89)

Neglecting higher order electroweak corrections the matrix elements factor into hadronic and lep-
tonic matrix elements. We can write down the most general decomposition of the hadronic matrix
element in terms of form factors in the HQET normalization

〈D(p′)|c̄v′γµbv|B̄(p)〉
√
mBmD

= h+(w)
(
vµ + v′µ

)
+ h−(w)

(
vµ − v′µ

)
〈D∗(p′, ε)|c̄v′γµbv|B̄(p)〉

√
mBmD

= hV (w)εµναβε
∗νv′αvβ (90)

〈D∗(p′, ε)|c̄v′γµγ5bv|B̄(p)〉
√
mBmD

= −ihA1
(w)(1 + w)ε∗µ + ihA2

(w)(1 + w)(ε∗ · v)vµ+

+ ihA3
(w)(1 + w)(ε∗ · v)v′µ

The form factors are functions of the variable w = v · v′ With this we can compute the differential
cross section for the meson decays

dΓ

dw
(B̄ → D(∗)eν̄e) =

G2
F |Vcb|m5

B

48π3
K(∗)(w, r(∗))FD(∗)(w)2 (91)

where K(∗)(w) is a function of w and r(∗) =
m
D(∗)
mB

and FD(∗) is a function of the form factors.
We can do the same now in HQET using the heavy quark symmetry. After some work, we can

relate all bispinors using the relation /vH
(f)
v = H

(f)
v giving

c̄v′Γbv = −ξ(w)H
(c)
v′ ΓH(b)

v (92)
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where the H
(i)
v are the meson fields with heavy quark flavour i and velocity v and ξ(w) is the

so-called Isgur-Wise function. Then, the form factors for the matrix elements simplify drastically

〈D(v′)|c̄v′γµbv|B̄(v)〉 = ξ(w)
(
vµ + v′µ

)
〈D∗(v′, ε)|c̄v′γµbv|B̄(v)〉 = ξ(w)εµναβε

∗νv′αvβ (93)

〈D∗(v′, ε)|c̄v′γµγ5bv|B̄(v)〉 = −iξ(w)
(
(1 + w)ε∗µ − (ε∗ · v)v′µ

)
Comparing this to what we found for the calculations in the electroweak theory we find

h+(w) = hV (w) = hA1
(w) = hA3

(w) = ξ(w) (94)

h−(w) = hA2
(w) = 0 (95)

which implies
FD(w) = FD∗(w) = ξ(w) (96)

It turns out that 1/mQ corrections are absent in these calculations in the zero recoil limit w → 1,
so we can test how well the heavy quark symmetry works. In figure 4 the ratio FD∗/FD is plotted
as it was measured by the ALEPH collaboration. There we can see that in the zero recoil limit our
predictions using heavy quark symmetry are correct. The huge uncertainties for w → 1 come from
the fact that it is not possible to make measurements at that kinematic point so the results have
to be extrapolated.
Physically this is easy to understand. In the heavy quark limit we cannot differentiate between the
b and c quark. Therefore in the zero recoil limit where the velocity of the heavy quark is unchanged
effectively nothing happens during the decay. Therefore the ratio must be one.
Another application of this is that it allows us to extract the value of |Vcb| of the CKM matrix very
precisely which is otherwise really hard to determine.

Figure 4: The ratio FD∗/FD as measured by the ALEPH collaboration.
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