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Exercise Sheet No. 11 To be discussed from 25.01. - 30.01.16.
Problem 1:
Current density 3 Points

Calculate the current density of the wave function ¢(r), which is the sum of the incoming
plane wave ¢o(r), and the scattered wave ¢g(r):

¢(r) = do(r) + ds(r)

¢0(r) — eikrcosﬂ

Which interference terms appear?
Hint:
Neglect terms proportional to r—" for n > 3.

Problem 2:

Asymptotic solution of the Scattering problem 3 Points

Show that the asymptotic solution of the scattering problem,
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satisfies the Schrodinger equation, if the scattering potential falls off faster than 1/r.

Problem 3:

Scattering on a central potential 4 Points

Determine the scattering phases §;(k), as well as the scattering amplitude f (1), for an elastic
scattering on a central potnential:

with the simplification ¢ < h?/(2m).
Hints:
Use the sum:
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and the ansatz:

o(r) = Z Ry(r)P(cos )

1=0
The Laplace operator in spherical coordinates is given by:
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The asymptotic behaviour of the radial part of the wave function is:
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where p = kr.

Under what condition does the radial Schrodinger equation become Bessel’s differential equa-
tion?

The asymptotic form of the Bessel functions is given by:
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