Quantum Mechanics II

Winter Term 2015/16
Hand in until Thursday, 21.01.16, 12:00 next to PH 3218.
Exercise Sheet No. 11
To be discussed from 25.01. - 30.01.16.

Problem 1:
Current density

Calculate the current density of the wave function $\phi(\mathbf{r})$, which is the sum of the incoming plane wave $\phi_{0}(\mathbf{r})$, and the scattered wave $\phi_{s}(\mathbf{r})$:

$$
\begin{aligned}
\phi(\mathbf{r}) & =\phi_{0}(\mathbf{r})+\phi_{s}(\mathbf{r}) \\
\phi_{0}(\mathbf{r}) & =\mathrm{e}^{\mathrm{i} k r \cos \vartheta} \\
\phi_{s}(\mathbf{r}) & =f(\vartheta) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}
\end{aligned}
$$

Which interference terms appear?
Hint:
Neglect terms proportional to r^{-n} for $n \geq 3$.

Problem 2:

Asymptotic solution of the Scattering problem

Show that the asymptotic solution of the scattering problem,

$$
\phi(\mathbf{r})=\mathrm{e}^{\mathrm{i} k r \cos \vartheta}+f(\vartheta) \frac{\mathrm{e}^{\mathrm{i} k r}}{r} ; \quad\left(k^{2}=\frac{2 m E}{\hbar^{2}}\right)
$$

satisfies the Schrödinger equation, if the scattering potential falls off faster than $1 / r$.

Problem 3:

Scattering on a central potential

Determine the scattering phases $\delta_{l}(k)$, as well as the scattering amplitude $f(\vartheta)$, for an elastic scattering on a central potnential:

$$
V(\mathbf{r})=V(r)=\frac{c}{r^{2}} ; \quad c>0
$$

with the simplification $c \ll \hbar^{2} /(2 m)$.
Hints:
Use the sum:

$$
\sum_{l=0}^{\infty} P_{l}(\vartheta)=\frac{1}{2 \sin (\vartheta / 2)}
$$

and the ansatz:

$$
\phi(\mathbf{r})=\sum_{l=0}^{\infty} R_{l}(r) P_{l}(\cos \vartheta)
$$

The Laplace operator in spherical coordinates is given by:

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{\mathbf{L}^{2}}{\hbar^{2} r^{2}} .
$$

The asymptotic behaviour of the radial part of the wave function is:

$$
R_{l}(\rho) \rightarrow \frac{1}{\rho} \sin \left(\rho-\frac{l \pi}{2}+\delta_{l}\right) \mathrm{e}^{\mathrm{i} \delta_{l}}
$$

where $\rho=k r$.
Under what condition does the radial Schrödinger equation become Bessel's differential equation?
The asymptotic form of the Bessel functions is given by:

$$
j_{\lambda}(\rho) \rightarrow \frac{1}{\rho} \sin \left(\rho-\frac{\lambda \pi}{2}\right)
$$

