Quantum Mechanics II

Winter Term 2015/16

	Hand in until Thursday, $10.12.15$, $12:00$ next to PH 3218.
Exercise Sheet No. 07	To be discussed from 14.12 18.12.15.

Problem 1:Two-Photon Decay of the 2s State of the Hydrogen Atom10 Points

Determine the lifetime of the 2s state of the hydrogen atom assuming a decay with the emission of two photons.

- (a) Write down the interaction Hamiltonian H_I
- (b) Insert the electric field operator $\mathbf{A}(\mathbf{x})$ into the Hamiltonian, separate it into two terms, $H_{1\gamma}$, containing a single photon creation operator $a^{\dagger}(\mathbf{p})$, and $H_{2\gamma}$ containing two creation operators.

From this you can see that at first order perturbation theory, $H_{1\gamma}$ creates a single photon. To calculate two photon production, we need to use Fermi's golden rule at second order, which gives us the emission rate:

$$R_{i \to f} = \frac{\mathcal{N}^4}{\hbar^2} \left| \langle f | H_I | i \rangle + \sum_n \frac{\langle f | H_I | n \rangle \langle n | H_I | i \rangle}{E_i - E_n} \right|^2 \delta \left(\frac{E_f - E_i}{\hbar} \right) ,$$
$$= \frac{\mathcal{N}^4}{\hbar^2} |\mathcal{M}_{1\gamma} + \mathcal{M}_{2\gamma}|^2 \delta \left(\frac{E_f - E_i}{\hbar} \right) ,$$

where \mathcal{N} is the normalization constant for the electromagnetic field, and E_f is the energy of the final state including the energies of the two photons.

- (c) Write down the matrix element $\mathcal{M}_{2\gamma}$, which corresponds to $H_{2\gamma}$, to first order in perturbation theory.
- (d) The matrix element for creating two photons $\mathcal{M}_{1\gamma}$ vanishes at first order. Write down the second order result.
- (e) Express the total matrix element $\mathcal{M} = \mathcal{M}_{1\gamma}^{(2)} + \mathcal{M}_{2\gamma}^{(1)}$, and extract the dimensionless part as \mathcal{M}' .
- (f) Assuming that $\sum_{\alpha_1,\alpha_2} |\mathcal{M}'|^2 \approx 1$, estimate the lifetime of the 2s state. Compare with the decay rate through emission of a single photon.