Quantum Mechanics II

Winter Term 2015/16

Hand in until Thursday, 26.11.15, 12:00 next to PH 3218.

Problem 1:

Landau-Zener Formula

Consider a two-level quantum mechanical system described by the following time-dependent Hamiltonian

$$
H(t)=\left(\begin{array}{cc}
-\epsilon(t) & -f \tag{1}\\
-f & \epsilon(t)
\end{array}\right)
$$

with a linearly time-dependent sweep $\epsilon(t)=-\alpha t$ for $\alpha>0$ and where $f>0$ is a coupling between the two eigenstates $|1\rangle$ and $|2\rangle$ of the unperturbed system.
(a) Calculate the eigenvalues $E_{1,2}$ of this Hamiltonian and express them in terms of $\epsilon(t)$. Give the eigenvectors $|1\rangle,|2\rangle$ and the eigenvalues $E_{1,2}^{\infty}$ at large times $t \rightarrow \pm \infty$. Sketch $E_{1,2}(t)$ in the range $-\infty<t<\infty$. What happens for $f \rightarrow 0$?
(b) Consider a general state

$$
\begin{equation*}
|\psi(t)\rangle=c_{1}(t)|1\rangle+c_{2}(t)|2\rangle \tag{2}
\end{equation*}
$$

and show that solving the Schrödinger equation (assume $\hbar \equiv 1$) leads to the ordinary differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} c_{2}(t)+\left[f^{2}-\mathrm{i} \alpha+(\alpha t)^{2}\right]=0 \tag{3}
\end{equation*}
$$

for the amplitude $c_{2}(t)$.
(c) Show that the variable substitution $t \rightarrow z(t)=\mathrm{e}^{-\mathrm{i} \frac{\pi}{4}} \sqrt{2 \alpha} t$ transforms Eq. (3) to the so-called Weber equation,

$$
\begin{equation*}
\frac{d^{2}}{d z^{2}} \tilde{c}_{2}(z)+\left[\nu+\frac{1}{2}-\frac{z^{2}}{4}\right]=0 \tag{4}
\end{equation*}
$$

with $\nu=\frac{\mathrm{i} f^{2}}{2 \alpha}$ and where $\tilde{c}_{2}(z)=c_{2}(z(t))$.
(d) Eq. (4) is solved by the four parabolic cylinder functions, or Weber functions, $D_{\nu}(z)$, $D_{\nu}(-z), D_{-\nu-1}(i z)$ and $D_{-\nu-1}(-i z)$ the former two of which are linearly independent for $\nu \notin \mathbb{Z}$.
Verify that $D_{\mu}(\zeta)$ is a solution of the Weber equation (4) with $\nu=\mu$ if it obeys the following recursive relations for arbitrary ζ and μ :

$$
\begin{align*}
D_{\mu+1}(\zeta)-\zeta D_{\mu}(\zeta)+\mu D_{\mu-1}(\zeta) & =0 \tag{5}\\
\frac{d}{d \zeta} D_{\mu}(\zeta)+\frac{1}{2} \zeta D_{\mu}(\zeta)-\mu D_{\mu-1}(\zeta) & =0 \tag{6}
\end{align*}
$$

Assume that initially the system is in the state $|1\rangle$, so that the following initial conditions hold:

$$
\begin{align*}
& \left|c_{1}(t \rightarrow-\infty)\right|^{2}=1 \tag{7}\\
& \left|c_{2}(t \rightarrow-\infty)\right|^{2}=0 \tag{8}
\end{align*}
$$

During the linear sweep over the avoided crossings, the coupling f causes population transfer from $|1\rangle$ to $|2\rangle$. Our aim is to find the probability to find system in the state $|1\rangle$ at $t \rightarrow \infty$:

$$
\begin{equation*}
P_{\mathrm{LZ}} \equiv\left|c_{1}(t \rightarrow \infty)\right|^{2}=1-\left|c_{2}(t \rightarrow \infty)\right|^{2} \tag{9}
\end{equation*}
$$

Among the four solutions of Eq. (4) only the Weber function $D_{-\nu-1}(-i z)$ vanishes for $t \rightarrow$ $-\infty$. The coefficient $c_{2}(t)$ thereby fulfills the initial condition (8) if it is written as

$$
\begin{equation*}
c_{2}(t)=\tilde{c}_{2}(z)=A D_{-\nu-1}(-i z(t)), \tag{10}
\end{equation*}
$$

where A is a normalization constant. Defining $R=\sqrt{2 \alpha} t$, the asymptotic expressions for $D_{-\nu-1}(-i z(t))$ in the limits $t \rightarrow \mp \infty$ are given by

$$
\begin{align*}
& D_{-\nu-1}(-i z(t \rightarrow-\infty))=\mathrm{e}^{-\frac{1}{4} \pi(\nu+1) \mathrm{i}} \mathrm{e}^{-\mathrm{i} \frac{R^{2}}{4}} R^{-\nu-1} \tag{11}\\
& D_{-\nu-1}(-i z(t \rightarrow+\infty))=\frac{\sqrt{2 \pi}}{\Gamma(\nu+1)} \mathrm{e}^{\frac{1}{4} \pi \nu \mathrm{i}} \mathrm{e}^{\mathrm{i} \frac{R^{2}}{4}} R^{\nu} . \tag{12}
\end{align*}
$$

(e) Find the asymptotic expression $c_{1}(t \rightarrow-\infty)$ by inserting $c_{2}(t \rightarrow-\infty)$ into the Schrödigner equation.
(f) Show that $A=\sqrt{\gamma} \mathrm{e}^{-\frac{\pi \gamma}{4}}$ fulfills the normalization condition (7), where $\gamma=-\mathrm{i} \nu=\frac{f^{2}}{2 \alpha}$.
(g) Derive the Landau-Zener formula:

$$
\begin{equation*}
P_{\mathrm{LZ}}=\mathrm{e}^{-2 \pi \gamma} \tag{13}
\end{equation*}
$$

by using the properties of the Gamma function:

$$
\begin{align*}
\Gamma(\pm \mathrm{i} \gamma+1) & = \pm \mathrm{i} \gamma \Gamma(\pm \mathrm{i} \gamma) \tag{14}\\
|\Gamma(\pm \mathrm{i} \gamma)| & =\sqrt{\frac{\pi}{\gamma \sinh \pi \gamma}} . \tag{15}
\end{align*}
$$

(h) What is the physical consequence for a strong coupling f and a slow variation of the energy difference α, i.e. $f^{2} \gg \alpha$? What happens for a vanishing coupling f ?

