Quantum Mechanics II

Winter Term 2015/16

	Hand in until Thursday, 12.11.15, 12:00 next to PH 3218.
Exercise Sheet No. 04	To be discussed from 16.11 20.11.15.

Problem 1: Fermi's Golden Rule

Recall that the transition probability per unit time (rate) from a energy eigenstate $|m\rangle$ into other energy eigenstates $|f\rangle$ in a continuum under the influence of a interaction $V_{\rm I}$ is given by *Fermi's golden rule*

$$\Gamma_{m \to \{f\}} = \frac{2\pi}{\hbar} \rho(f) |\langle f| V_{\mathrm{I}} |m\rangle|^2 \,, \tag{1}$$

with $\rho(f)$ is the number of final states. One can use *Fermi's golden rule* to calculate the decay rate of a β -decaying neutron: $n \to p^+ + e^- + \bar{\nu}_e$. A simple form of the perturbation is given by *Fermi's ansatz*:

$$\langle p^+ e^- \bar{\nu}_e | V_{\rm I} | n \rangle = \frac{G_F \mathcal{M}}{V} \,, \tag{2}$$

with the *Fermi constant* G_F , the nuclear matrix element \mathcal{M} and the normalization volume $V = \int d^3x$. For now it can be assumed that $|\mathcal{M}|^2 \approx 1$. In the following calculation use relativistic expressions for the energies.

(a) Express the number of final states $\rho(E)$ for which the electron energy E_e is smaller than E as an integral.

Hint: What is the corresponding volume of the phase space element $d^3p_ed^3p_{\nu_e}d^3x_ed^3x_{\nu_e}$ for electrons and neutrinos? Use a delta function $\delta(E_i - E_f)$ to account for energy conservation between the initial and final states with energy E_i and E_f , respectively. Moreover, the neutrino mass can be neglected.

- (b) Show that the kinetic energy of the proton T_p can be neglected compared to the energies of the neutrino E_{ν_e} and the electron E_e .
- (c) Express the rate $\Gamma(E)$ for the neutron to decay into electrons with energy smaller than E.
- (d) What is the differential rate $d\Gamma(E)/dE$?
- (e) Plot $d\Gamma(E)/dE$ over E.
- (f) Compute the total rate Γ . (You may use *Mathematica* for solving the integral.)

10 Points