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Problem 1: Positronium annihilations 2.5 Points

In the lectures we have discussed several scattering and pair-annihilation/production proces-
ses at tree level in QED. A common feature of all these processes is, that the incoming and
outgoing states were considered as asymptotically free single particle states. The respective
reactions refer to an experimental setup, where isolated particles collide with each other
either in a head-on collision, or in a collision, where one particle is fired on a fixed target.
Typically, the energies of the involved particles are relativistic.

This problem shall highlight some aspects of annihilation processes in a non-relativistic two-
particle bound-state system: positronium.
Positronium is a bound state of a non-relativistic e+e− pair. For slowly moving particles, the
Coulomb attraction of the e+ and e− becomes an important effect and leads to a distortion
of the e+ and e− waves functions away from plane waves (that are considered in relativistic
scattering processes of isolated single particles, as in the lecture, for example). The proper
treatment of bound-states is a complicated topic. Here we will follow a simple heuristic
approach, that however incorporates the basic features of annihilation reactions of non-
relativistic bound states.1

Consider the center-of-mass system of the e+e− pair. In presence of a Coulomb potential
interaction, the wave function ψ(~r ), that is associated with the relative motion of the e+e−
pair, is determined by the stationary Schroedinger equation(
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ψ(~r ) = E ψ(~r ) , (1)

where µ = me/2 is the reduced mass of the two-particle system and ~r is its relative coordinate.
V (~r ) = −α/r represents the (attractive) Coulomb potential, where α = e2/4π ≈ 1/137 is
the fine-structure constant.
The state-vector of the bound system can be thought of as a linear superposition of the free-
particle states |e+(~p) e−(−~p) 〉 with three-momenta ~p, weighted by the wave function ψ(~r )
(or better, as we consider a superposition of momentum eigenstates, its Fourier-transform
ψ̃(~p )):
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|e+(~p )e−(−~p ) 〉 . (2)

a) Determine the wave function ψ0(~r ) corresponding to the positronium ground-state
with energy eigenvalue E0 = −meα

2/4 by solving the Schroedinger equation (1). Make
1You might find chapter 5.3 in the textbook Peskin/Schroeder useful.



a factorization ansatz in spherical coordinates ψ0(~r ) = R10(r)Y00(θ, φ) and determine
R10(r). Recall, that the ground state is characterized by orbital angular momentum
l = 0, hence the spherical harmonic Y00(θ, φ) = 1√

4π
occurs in ψ(~r ).

b) With the ansatz (2) for a positronium state vector, the matrix element for positronium
annihilation into two photons can be written as
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,

where M (e+(~p ) e−(−~p )→ γγ ) is the perturbative, relativistic annihilation matrix
element.

Using the results for the spin averaged annihilation matrix element derived in the
lecture, determine the Ps→ γγ annihilation rate ΓPs→γγ of positronium in the ground
state in the extreme non-relativistic limit. You need to know the ground state wave
function ψ0(~r ) derived under a) and the (spin-averaged) annihilation matrix element
M derived in the lecture. In the latter keep only terms proportional to the zeroth order
of the e+ and e− three momentum ±~p. Under the assumption, that positronium in the
ground state can only disintegrate into two photons, give the positronium life-time in
seconds.

Problem 2: Positronium annihilations into γγ - refined analysis 5 Points

As positronium is a bound system of two spin 1/2 particles, there exist positronium states
with spin 0 called parapositronium and spin 1 states referred to as orthopositronium. Calcu-
late the annihilation matrix elementM(Ps→ γγ) separately for ortho- and parapositronium
in the ground state at leading order in a non-relativistic expansion in the e+ and e− three
momenta ±~p. Note, that you cannot perform a spin-average here, as we explicitly want
separate expressions for the spin 0 and spin 1 systems. Instead, you should consider the
amplitudeM(e+(~p, s)e−(−~p, s′) → γγ) for a fixed spin configuration. You need an explicit
form of the external spinors as a function of momenta and spins. It is convenient to work in
the Dirac representation, where the spinors are given by
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with ξ1/2 =
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In order to simplify the expression for the amplitudeM, before doing the expansion in the
non-relativistic regime, make use of the relations /p u(p) = me u(p) and ε(k) ·k = 0. Further
argue, that one can always choose the photon polarization vectors such, that in the non-
relativistic regime ε(k) · p ≈ ε(k)0 p0 = 0. Afterward you should perform an expansion in ~p,
keeping only the zeroth order. This implies for example pµe+,e− ≈ (me,~0)µ.
Determine the decay rates of para- and orthopositronium into two photons. Give the life-time
of parapositronium, compare to your result in problem 1 above and discuss your result.



Problem 3: Furry’s Theorem 2.5 Points

In (spinor) QED a photon cannot split into an even number of photons. This statement is
true to all orders of perturbation theory. Consider the process γ(p)→ γ(q1)γ(q2); in leading
order in the electromagnetic coupling there are two diagrams:
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(a) Let us first define the matrix N = γ0γ2. On can explicitly show that NγµN = −(γµ)T .
Use this to show that

Tr{γµ1γµ2γµ3γµ4 · · · } = Tr{· · · γµ4γµ3γµ2γµ1}

(b) Proof that the total amplitude for γ(p)→ γ(q1)γ(q2) vanishes at 1-loop level.


