Exercises for Theoretical Particle Physics I

Björn Garbrecht Dario Gueter Juraj Klarić Marco Drewes To be handed back in July 13th

Problem 1: The seesaw mechanism

The neutrinos are nearly massless neutral particles. Their interactions violate parity: only the left-handed neutrinos interact with W and Z bosons.

a) The Z boson has an associated U(1) gauge invariance which is broken in nature. If only left-handed neutrinos ν_L exist, the only possible dimension four mass term is a Majorana mass of the form $\mathcal{L} \subset \overline{\nu_L^c} M \nu_L$. Show that this mass term is forbidden by the U(1) symmetry.

This motivates the introduction of "right-hadnded" neutrinos ν_R . The kinetic Lagrangian involving ν_L and ν_R is:

$$\mathcal{L}_{\text{kin.}} = \overline{\nu_L} \partial \!\!\!/ \nu_L + \overline{\nu_R} \partial \!\!\!/ \nu_R + -\overline{\nu_{L,a}} m_{ai} \nu_{R,i} + \frac{1}{2} \nu_{R,i}^T C^{-1} M_i \nu_{R,i} , + \text{h.c.}$$

where m is a $3 \times n_s$ matrix, and M is a $n_s \times n_s$ matrix with $n_s \ge 2$ being the nubmer of new right-handed states.

- b) Show that each ν_R^c transforms as a left-handed spinor under the Lorentz group, so that it can mix with ν_L .
- c) Rewrite the Lagrangian in terms of a doublet $\Psi = (\nu_L, \nu_R^c)$. This is not a Dirac spinor, but a doublet of left-handed Weyl spinors. Using \mathcal{L}_{kin} , show that this doublet satisfies the Klein-Gordon equation. Find the mass eigenstates for the neutrinos by blockdiagonalizing the mass matrix and neglecting terms which are higher order in m/M.
- d) Assume $M = 10^{10} \text{ GeV}$ and $m = vY \approx 100 \text{ GeV}$. What are the masses of the physical particles? Considering that the lower bound on the observed neutrino masses is at the $\sim 10 \text{ meV}$ scale, what value of M can you expect if m is similar to the electron mass $m_e = 0.511 \text{ MeV}$?
- e) The left-handed neutrino couples tot he Z boson and also to the electron through the W boson. The relevant part of the interaction lagrangian is:

$$\mathcal{L}_{ ext{int.}} = g_w \left(\overline{
u_L} / \!\!\!\!/ \, \ell_L + \overline{\ell_L} / \!\!\!/ \,
u_L
ight) + g_Z \overline{
u_L} / \!\!\!\!/ \,
u_L$$

Using these interactions, draw a Feynman diagram for neutrinoless double β -decay, in which two neutrons decay to two protons and two electrons.

f) Which of the terms in $\mathcal{L}_{kin.}$ and $\mathcal{L}_{int.}$ respect a global symmetry (lepton number) under which $\nu_L \to e^{i\theta}\nu_L$, $\nu_R \to e^{i\theta}\nu_R$ and $\ell_L \to e^{i\theta}\ell_L$? Define arrows on e and ν lines in the neutrinoless double β -decay diagram to respect lepton number flow. Show that you cannot connect the arrows on the diagram without violating lepton number. Does this imply that neutrinoless double β -decay can tell if the neutrino has a Majorana mass?

SS 2017 Sheet 8

5 points

Problem 2: Neutrinos and leptonic CP violation

Br repeating a procedure similar to the one for quarks done in the lecture one can find that a necessary and sufficient condition for CP-conservation in the leptonic sector is the existence of unitary matrices W, U and V such that equations:

$$U^{\dagger}mW = m^* ,$$

$$U^{\dagger}m_{\ell}V = m^*_{\ell} ,$$

$$W^TMW = M^* ,$$

are all satisfied simultaneously. With m_{ℓ} being the mass matrix of the charged leptons.

- a) show that the requirement for the existance of V is trivially satisfied if $m_{\ell}^{\dagger}m_{\ell}$ has real eigenvalues.
- b) replace the requirement on m_{ℓ} by a requirement on $h_{\ell} = m_{\ell} m_{\ell}^{\dagger}$.
- c) in the last problem you have shown that the light neutrino mass matrix is given by $m_{\nu} = m M^{-1} m^{T}$. What are *CP*-conserving requirements for this mass matrix?
- d) show that you can separate the requirements on U and W by looking at the low-energy m_{ν} , h_{ℓ} and high-energy M, $h = m^{\dagger}m$ parts of the theory separately.

Traces of various combinations of these matrices can be used to state the requirements for CP-conservation without having to find the particular matrices U and W.

- e) show that $\operatorname{Im} \operatorname{Tr}(h_{\ell}m_{\nu}m_{\nu}^{*}m_{\nu}h_{\ell}^{*}m_{\nu}^{*}) = 0$ is a necessary condition for *CP* invariance
- f) Consider the invariants

$$I_1 = \operatorname{Im} \operatorname{Tr}[h(M^{\dagger}M)M^*h^*M], \qquad (1)$$

$$I_2 = \operatorname{Im} \operatorname{Tr}[h(M^{\dagger}M)^2 M^* h^* M], \qquad (2)$$

$$I_3 = \operatorname{Im} \operatorname{Tr}[h(M^{\dagger}M)^2 M^* h^* M H], \qquad (3)$$

in the basis where M is diagonal. Under what conditions can you reconstruct $\text{Im}(h_{12}^2)$, $\text{Im}(h_{23}^2)$ and $\text{Im}(h_{13}^2)$ from the values of I_1 , I_2 and I_3 ?