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This exercise deals with a very interesting problem: Neutrino oscillations. In the Standard
Model, there are only left chiral (left handed) neutrinos νL, and they are exactly massless.
The observed neutrino oscillations imply that neutrinos have masses. One possibility to
explain neutrino masses is to assume that, in addition to νL, neutrinos νR, with right handed
chirality exist (right handed neutrinos). Then, as for all other fermions, a mass term of the
form

ν̄LmDνR + h.c. (1)

can be generated via the Higgs mechanism from Yukawa couplings ¯̀
LFνRφ̃. If we do not

want to assume the existence of new particles νR, then the only mass term we can write
down is a Majorana mass term of the form
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with νcL = Cν̄TL , where the charge conjugation matrix is C = iγ2γ0. This term, however,
breaks gauge invariance unless it is generated by spontaneous symmetry breaking (Higgs
mechanism) from a gauge invariant term like
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where f is a dimensionless flavour matrix and Λ an energy scale much larger than the scale of
neutrino experiments. This dimension-5 operator is not renormalizable; in an effective field
theory approach it can be understood as the low energy limit of renormalizable operators
that is obtained after integrating out heavier degrees of freedom with masses M ≤ Λ. At
low energies E � Λ one effectively observes only three massive neutrinos. At high energies
new particles with masses M ∼ Λ appear. Therefore neutrino masses definitely imply the
existence of new physics, although the Majorana mass term can be constructed from SM
fields only. In fact, neutrino masses are the only definite sign of physics beyond the SM that
has been seen in the laboratory to date. This makes them very interesting.
In the following we will assume that neutrinos are described by the following Lagrangian
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The interaction terms define the basis of weak interaction eigenstates (electron, muon and
tau neutrino), which are also called flavour eigenstates. More precisely, if one considers the
general form of the interaction GF
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µUαβeL,βWµ in the basis where charged Yukawa
couplings are diagonal, then the basis of weak interaction eigenstates for νL is the one where
Uαβ = δαβ. The matrix mν in general is not diagonal in that basis. It can be diagonalized by
a transformation

mν = Uνdiag(m1,m2,m3)UT
ν . (5)



In the mass base, the neutrino mixing matrix Uν appears in the coupling to Wµ. Hence, the
weak interaction eigenstates νL,e, νL,µ and νL,τ are superpositions of three mass eigenstates
νL,i of mν with masses mi. For a given momentum, these have different energies if their
masses are different, and their wave functions oscillate with different frequencies. Thus, the
flavour decomposition of a neutrino state changes in time. This can explain the observed
neutrino oscillations (see problem 3).
The matrix Uν is commonly parametrized as

Uν = V (23)UδV
(13)U−δV

(12)diag(eiα1/2, eiα2/2, 1) , (6)

with U±δ = diag(e∓iδ/2, 1, e±iδ/2) and where the non-vanishing entries of V (ab) for a = e, µ, τ
are given by

V (ab)
aa = V
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ba = cos θab , V

(ab)
ab = −V (ab)

ba = sin θab , V
(ab)
cc = 1 for c 6= a, b , (7)

with θai the neutrino mixing angles and α1,2, δ CP-violating phases. Many parameters of the
mixing matrix Uν have been measured. In particular, two mass square differences have been
determined as ∆m2

sol = m2
2 −m2

1 ' 7.5× 10−5eV2 and ∆m2
atm = |m2

3 −m2
1| ' 2.5× 10−3eV2,

the mixing angles are θ12 = 34◦, θ23 = 39◦ and θ13 = 9◦.
(arXiv:1303.6912 [hep-ph] by Marco Drewes might be useful for a deeper understanding.)

Problem 1: Lepton vs quark mixing 2 points

The matrix Uν is the lepton sector analogue to the CKM-matrix. What is the main difference
between Uν and the CKM-matrix? Why are there more free parameters? Can the number of
physical parameters be reduced for some specific choice of mν?

Problem 2: Neutrino oscillations 4 points

We will now consider a simplified system with only two neutrino flavours. We call the flavour
eigenstates νe and νµ, i.e. electron and myon neutrino. We consider a plane wave of neutrinos
with fixed momentum and represent this state by a vector (νe, νµ)T . The basis of mass
eigenstates (ν1, ν2)T with masses m1 and m2 is rotated with respect to that by an angle
θ. Show that the oscillations of these neutrinos in vacuum is governed by the Schroedinger
equation
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where ∆m2 = m2
1 −m2

2 is the mass square difference between the masses.

Hint: Begin with the Schroedinger equation in the mass basis
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expand the square roots in mi � |p| and make use of the fact that adding and subtracting
multiples of the unit matrix to Heff does not affect the oscillations (it only gives an overall
phase).

Problem 3: Neutrino oscillations in matter 4 points

Let us consider neutrinos inside a star (e.g. the sun). There are many electrons in the stellar
plasma (and almost no muons). νe can interact by charged and neutral current interacti-
ons with them, νµ only by neutral current interactions. That leads to an extra potential
Ve =

√
2GFNe for νe, where Ne is the electron density. The potential from neutral current

interactions with the plasma can be neglected because all neutrinos feel it, hence it gives
a contribution proportional to the unit matrix to Heff . The effective Hamiltonian Heff then
reads
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In general Ve(t) effectively is a function of time because the electron density can change
along the neutrino trajectory. Show that this can be written in the form
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where 2Θ(t) and ∆M(t)2 are functions of ∆m2, θ and Ve(t) (Hint: you may want to subtract
1Ve/2 first). This means that the mass- and flavour basis can rotate with respect to each
other while the neutrinos oscillate. Consider the regimes the regimes ∆M(t) � Θ̇(t) and
∆M(t) � Θ̇(t) , in which neutrino oscillations are either much faster or much slower than
the rotation of the bases. In these two regimes, two qualitatively different mechanisms are at
work that change the neutrino flavour (in the general case both mechanisms coexist). Find
approximate solutions in these regimes. You may go into the time dependent mass base. If
you cannot find explicit solutions, describe qualitatively what happens.


