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Aufgabe 1:
Noether charge with transformations of time 5 Punkte

As seen in the lectures, if the action is invariant under an infinitesimal transformation of the
generalized coordinates ¢;(t) — ¢.(t) = qi(t) + €5Q;[qi(t)], such that
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then there is a conserved Noether charge
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Consider now transformations of both the generalized coordinates and the time variable,

qi(t) = ¢ (") = ai(t) + €0Qai(t)],
t =t =t+eT(t),

which are assumed to leave the action invariant.

1. Show that one has (up to higher order corrections in ¢)
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which, according to equations (1) and (2), leads to the conservation of the charge
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as well as the Euler-Lagrange equations. |

[Hints. Use the identity



2. Consider the Lagrangian of a particle in a central potential decaying as 1/r%:
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Show that the action is invariant under transformations

rlt] =[] = (L+ e)rft],
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and compute the associated Noether charge in terms of energy, radial coordiante and its time
derivative.

Hint: Remember that when the time coordinate is affected by the transformation, the measure of
integration that appears in the action should change as well, namely:
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Aufgabe 2
The Steiner theorem 5 Punkte

Consider a frame K centered in the center of mass of a rigid body of mass M and fixed to the

body. In this frame, the tensor of inertia of the rigid body is .J,,. If we consider another frame K’

which is parallel to K but shifted by a constant vector a, the tensor of inertia in this frame will

be J;,. Show that the two tensors are related by the so called Steiner theorem for parallel axes:
T = T+ M[[a]0,, — a,a,]
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Keeping in mind the latter relation, complete the following tasks:

1. Compute the tensor of inertia of a sphere of radius R and homogeneous mass M in the
frame of its center of mass.

2. Consider a system made of two spheres with equal mass M /2 and same radius R, welded
together in their point of contact. Compute the tensor of inertia in centered in the latter.

3. Compute the tensor of inertia of a regular cone of height h, and base radius R in the frame
centered in its center of mass. (The position of the center of mass must be calculated.)
Hint1: In the frame centered in the vertex of the cone and with one axis along the symmetry
axis, the tensor of inertia is already diagonal. Compute I;, ¢+ = 1,2, 3 in that frame and then
use the Steiner theorem to shift them to the center of mass.

Hint2: Cylindrical coordinates might help.

4. Consider a homogeneous cuboid of mass M and dimensions a; = as, az. Starting from frame
K shown in figure, the tensor of inertia is diagonal. Compute it in that frame, and then
compute it in the primed frame K’ in which the 2% axis is pointing in the direction of the
main diagonal of the cuboid, as shown in figure.

Hint: Use the fact that a; = ao. This implies that the tensor has some symmetry, so that



from the frame K you can reach the tensor in the K’ by rotating it with a matrix of the
form:

cos¢p 0 —sing
Ry=1 0 1 0
sing 0 cos¢

Abbildung 1: The two frames K and K’ mentioned above.



