GROUP THEORY IN PHYSICS WS 2019/2020 EXERCISE SHEET 8

Problems will be discussed in the tutorial sessions every Friday at 2:00p.m. in the Minkowski Room

Spherical Harmonics and SO(3)

- 1. Starting from the definition of angular momentum as $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ build a functional representation of the $\mathfrak{so}(3)$ algebra with representation space $L^2(S^2)$ that is square-integrable complex-valued functions on the sphere, in other words write down differential operators that implement the commutator relations of the $\mathfrak{so}(3)$ algebra.
- 2. Build the spherical basis by defining \mathbf{L} , L_z and L_{\pm} so that we have ladder operators, compute the commutators.
- 3. Find an explicit basis of orthogonal functions, $\{\psi_m^{\ell}(\theta, \phi)\}$, for the operators \mathbf{L}^2 , L_z , by solving first the differential equation for the eigenfunctions of L_z and the eigenfunctions of \mathbf{L}^2 (Just recognize the differential equation after using spherical coordinates).
- 4. Using the basis found in the previous item compute the matrix elements for the different representation matrices $D^{\ell}(\lambda_i)$, defined by

$$P(\lambda_i)\psi_m^{\ell}(\theta,\phi) = \sum_{m'=-\ell}^{\ell} D^{\ell}(\lambda_i)_{m'm}\psi_{m'}^{\ell}(\theta,\phi)$$
(1)

and where $P(\lambda_i)$ are the operators from item 1). Find also the matrices corresponding to the basis built in 2).

- 5. Let V_{ℓ} the vector subspace of $L^2(S^2)$ spanned by $\{\psi_m^{\ell}\}$. Given the constraints coming from the equations above, find the dimensions of the V_{ℓ} . Is there a subspace of dimension 2?
- 6. Exponentiating the representations that we have, $D^{\ell}(\lambda_i)$, obtain the matrix corresponding to a finite rotation around an axis \hat{n} and an angle α for the case of $\ell = 1$. Compare with the results from the previous sheet.
- 7. Find a relation between Clebsch-Gordan coefficients and the $\{\psi_m^\ell\}$.

^{*}Responsible for the sheet: Juan S. Cruz, Office 1112, juan.cruz@tum.de