THEORETISCHE PHYSIK 2 (ELEKTRODYNAMIK) WS 2018/2019 Technische Universität München December 14, 2018

EXERCISE Sheet 9^*

Deadline: Sheet to be turned in by Friday 21st of December 2018 by 12 pm in the mailbox next to PH3218.

Exercise 1: Uniformly charged rotating sphere

4 Points

6 Points

A charged ball of radius R and total charge Q is charged homogeneously, so that the charge is distributed inside the whole ball (not only on its surface). Consider the situation in which it is rotating with a constant angular velocity $\vec{\omega}$ around the center of the sphere (i.e. $\vec{v} = \vec{\omega} \times \vec{r}$).

(a) (3 Punkte) Derive the pertaining current density $\vec{j}(\vec{r})$ and verify that $\nabla \cdot \vec{j} = 0$. Calculate the vector potential $\vec{A}(\vec{r})$ as well as the the magnetic field $\vec{B}(\vec{r})$ inside and outside the sphere.

Hint: Make use of the spherical symmetry

$$\int_{|\vec{r}'| < R} \mathrm{d}^3 \vec{r}' \frac{\vec{r}'}{|\vec{r} - \vec{r}'|} = C(r) \vec{r}$$
(1)

and derive C(r) by taking the scalar product of both sides with $\vec{r}/|\vec{r}|^2$.

(b) (1 Punkt) Calculate the magnetic dipole moment \vec{m} of the sphere. Compare the dipole field with the result from part (a).

Exercise 2: Force between circular circuits

Consider two generic wires along curves $\vec{r_1}$ and $\vec{r_2}$ carrying the currents I_1 and I_2 respectively.

- (a) (1 Punkt) Express the total force between the wires through a double integral along the two curves.
- (b) (5 Punkte) Assume the wires are two circular loops radius a that lie on parallel planes to the z = 0 plane, with their centers at the z-axis and with a distance d between them, such that d ≫ a. Let the lower loop carry the current I₁ and the upper loop the current I₂. Calculate the force F₂₁ = -F₁₂ ~ ẑ, between the two circuits. Express the result in terms of a power series in the small parameter s = (a/d)² up to order s⁴.

^{*}Responsible for the sheet: Juan S. Cruz, Office 1112, juan.cruz@tum.de