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Aufgabe 1:
Neumann Green function 6 Punkte

Consider the Green function appropriate for Neumann boundary conditions for a volume V'
(with boundary denoted by S) between the concentric spherical surfaces defined by r = a
and r = b, a < b. We take the simple constraint
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where A is the total area of the boundary S. Then we have the solution
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where (¢)g is the average value for the potential over the whole surface. Use an expansion
in spherical harmonics of the form

G(x,x') = Z gi(r,r") P/(cos ),
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where g,(r, 1) = rl/rit + fi(r, '), r< = min(|x], [x']) and 7> = max(|x|, [x]).
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(a) Show that for [ > 0, the radial Green function has the symmetric form
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Hint: Recall
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where 7 is the angle between x and x’. Then the first term in the expansion of g;(r, ") (and
hence the G(x,x’)) corresponds to the source of the singular delta function. The remaining
term in G(x,x’),

F(X, X,) = Z fl(r7 T/)H<COS 7)7

solves the source-free equation V2, F(x,x’) = 0 whose solution is of the form
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Finally, our goal is to apply the boundary conditions to solve g;(r, 7).
(b) Show that for [ = 0,
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where f(r) is arbitrary. Show explicitly that the solution ¢(x) given above is independent of
f(r).

Aufgabe 2
Solving the electrostatic potential using the Neuman Green function 4 Punkte

Apply the Neumann Green function of Problem 1 to the situation in which the normal electric
field E, = —FEycosf on the outer surface (r = b) and E, = 0 on the inner surface(r = a),
where Ej is constant.

(a) Show that the electrostatic potential inside the volume V' is
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where p = a/b. Find the components of the electric field,
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(b) Calculate the Cartesian or cylindrical components of the field, E, and E,, where p =
Var?+ 2.

Hint: Useful relations for special functions

Py(cosy) = 21+1ZY7" Q)Y ™ (),

4
cosf = 4/ ?WYP(Q),

where 2 and € are the spherical angle of x and X', respectively.



