Theoretische Physik 2 (Elektrodynamik)

Wintersemester 2016/17

Abgabe bis Freitag, 16.12.16, 12:00 neben PH 3218.

Übungsblatt Nr. 8

Dieses Blatt wird in den Übungen vom 19.12. - 23.12.16 besprochen.

Aufgabe 1:

Neumann Green function

6 Punkte

Consider the Green function appropriate for Neumann boundary conditions for a volume V (with boundary denoted by S) between the concentric spherical surfaces defined by r=a and r=b, a < b. We take the simple constraint

$$\frac{\partial G_N}{\partial n'}(\mathbf{x}, \mathbf{x}') = -\frac{4\pi}{A}$$
 for \mathbf{x}' on S ,

where A is the total area of the boundary S. Then we have the solution

$$\phi(\mathbf{x}) = \langle \phi \rangle_S + \int_V \rho(\mathbf{x}') G_N(\mathbf{x}, \mathbf{x}') d^3x' + \frac{1}{4\pi} \oint_S \frac{\partial \phi(\mathbf{x}')}{\partial n'} G_N(\mathbf{x}, \mathbf{x}') da',$$

where $\langle \phi \rangle_S$ is the average value for the potential over the whole surface. Use an expansion in spherical harmonics of the form

$$G(\mathbf{x}, \mathbf{x}') = \sum_{l=0}^{\infty} g_l(r, r') P_l(\cos \gamma),$$

where $g_l(r, r') = r_<^l/r_>^{l+1} + f_l(r, r'), r_< = \min(|\mathbf{x}|, |\mathbf{x}'|) \text{ and } r_> = \max(|\mathbf{x}|, |\mathbf{x}'|).$

(a) Show that for l > 0, the radial Green function has the symmetric form

$$g_l(r,r') = \frac{r_{<}^l}{r_{>}^{l+1}} + \frac{1}{(b^{2l+1} - a^{2l+1})} \left[\frac{l+1}{l} (rr')^l + \frac{l}{l+1} \frac{(ab)^{2l+1}}{(rr')^{l+1}} + a^{2l+1} \left(\frac{r^l}{r'^{l+1}} + \frac{r'^l}{r^{l+1}} \right) \right].$$

Hint: Recall

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma),$$

where γ is the angle between \mathbf{x} and \mathbf{x}' . Then the first term in the expansion of $g_l(r, r')$ (and hence the $G(\mathbf{x}, \mathbf{x}')$) corresponds to the source of the singular delta function. The remaining term in $G(\mathbf{x}, \mathbf{x}')$,

$$F(\mathbf{x}, \mathbf{x}') = \sum_{l} f_l(r, r') P_l(\cos \gamma),$$

solves the source-free equation $\nabla_{x'}^2 F(\mathbf{x}, \mathbf{x}') = 0$ whose solution is of the form

$$f_l(r,r') = A_l r'^l + B_l \frac{1}{r'^{l+1}}.$$

Finally, our goal is to apply the boundary conditions to solve $g_l(r, r')$.

(b) Show that for l=0,

$$g_0(r,r') = \frac{1}{r_>} - \left(\frac{a^2}{a^2 + b^2}\right) \frac{1}{r'} + f(r),$$

where f(r) is arbitrary. Show explicitly that the solution $\phi(\mathbf{x})$ given above is independent of f(r).

Aufgabe 2:

Solving the electrostatic potential using the Neuman Green function 4 Punkte

Apply the Neumann Green function of Problem 1 to the situation in which the normal electric field $E_r = -E_0 \cos \theta$ on the outer surface (r = b) and $E_r = 0$ on the inner surface (r = a), where E_0 is constant.

(a) Show that the electrostatic potential inside the volume V is

$$\phi(\mathbf{x}) = E_0 \frac{r \cos \theta}{1 - p^3} \left(1 + \frac{a^3}{2r^3} \right),$$

where p = a/b. Find the components of the electric field,

$$E_r(r,\theta) = -E_0 \frac{\cos \theta}{1 - p^3} \left(1 - \frac{a^3}{r^3} \right),$$

$$E_{\theta}(r,\theta) = E_0 \frac{\sin \theta}{1 - p^3} \left(1 + \frac{a^3}{2r^3} \right).$$

(b) Calculate the Cartesian or cylindrical components of the field, E_z and E_ρ , where $\rho = \sqrt{x^2 + y^2}$.

Hint: Useful relations for special functions

$$P_l(\cos \gamma) = \frac{4\pi}{2l+1} \sum_m Y_l^m(\Omega) Y_l^{m*}(\Omega'),$$
$$\cos \theta = \sqrt{\frac{4\pi}{3}} Y_1^0(\Omega),$$

where Ω and Ω' are the spherical angle of \mathbf{x} and \mathbf{x}' , respectively.