GENERAL RELATIVITY WS 2017/2018 Technische Universität München October 23, 2017

Exercise Sheet 2

The solutions to the following problem set should be handed in by 30th of October at 8:30 a.m. at the postbox next to PH 3218.

1. (2 pts.) Prove that the Levi-Civita symbol transforms as a tensor density, i.e.

$$\epsilon_{\mu_1'\mu_2'\cdots\mu_n'} = \left| \frac{\partial x^{\mu_i'}}{\partial x^{\mu_j}} \right| \epsilon_{\mu_1\mu_2\cdots\mu_n} \frac{\partial x^{\mu_1}}{\partial x^{\mu_1'}} \frac{\partial x^{\mu_2}}{\partial x^{\mu_2'}} \cdots \frac{\partial x^{\mu_n}}{\partial x^{\mu_n'}} \tag{1}$$

For the above reason the proper Levi-Civita **tensor** is defined as

$$\varepsilon_{\mu_1\mu_2\cdots\mu_n} = \sqrt{|g|} \epsilon_{\mu_1\mu_2\cdots\mu_n} \tag{2}$$

where g is the determinant of the metric (0, 2)-tensor.

2. (3 pts.) Assume a given Lagrangian $\mathcal{L} = \mathcal{L}(\Phi, \partial_{\mu}\Phi)$ is invariant under translations of the coordinates $(x^{\mu} \to x^{\mu} - \epsilon^{\mu})$ of solutions to the Euler-Lagrange equations. By requiring invariance such invariance on \mathcal{L} , show that the following tensor,

$$T^{\mu}_{\ \nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)} \partial_{\nu}\Phi - \delta^{\mu}_{\ \nu}\mathcal{L},\tag{3}$$

referred to as an energy-momentum tensor, is conserved; meaning the following equation holds $\partial_{\mu}T^{\mu}_{\ \nu} = 0.$

Use the previous results for the case of a Lagrangian invariant under rotation of the coordinates, $(x^{\mu} \rightarrow x^{\mu} + w^{\mu}_{\ \nu} x^{\nu})$ where $w^{\mu}_{\ \nu}$ is an arbitrary antisymmetric matrix.¹

3. (2 pts.) From a finite collection of particles to a fluid. Consider an energy-momentum tensor of the form:

$$T_{\mu\nu} = \sum_{a} \frac{p_{\mu}^{(a)} p_{\nu}^{(a)}}{p^{0(a)}} \delta(\vec{x} - \vec{x}^{(a)})$$
(4)

Show that by smoothing over world-lines this tensor reduces to the perfect fluid one an **isotropic** velocity distribution.

4. (3 pts.) Study the electromagnetic theory Lagrangian plus the term $\mathcal{L}' = \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$. Find its expression in terms of the classical fields \vec{E} and \vec{B} . How are the Maxwell equations modified by this? Show that \mathcal{L}' is a pseudoscalar, meaning that it changes its sign under a parity transformation $x \to -x$. (+1 bonus pt.) Express \mathcal{L}' as a total derivative.

¹This corresponds to an infinitesimal rotation, in other words they are elements of the Lie algebra of the group of rotations.