GENERAL RELATIVITY WS 2017/2018
 Technische Universität München

October 23, 2017

Exercise Sheet 2

The solutions to the following problem set should be handed in by 30th of October at 8:30 a.m. at the postbox next to PH 3218.

1. (2 pts.) Prove that the Levi-Civita symbol transforms as a tensor density, i.e.

$$
\begin{equation*}
\epsilon_{\mu_{1}^{\prime} \mu_{2}^{\prime} \cdots \mu_{n}^{\prime}}=\left|\frac{\partial x^{\mu_{i}^{\prime}}}{\partial x^{\mu_{j}}}\right| \epsilon_{\mu_{1} \mu_{2} \cdots \mu_{n}} \frac{\partial x^{\mu_{1}}}{\partial x^{\mu_{1}^{\prime}}} \frac{\partial x^{\mu_{2}}}{\partial x^{\mu_{2}^{\prime}}} \cdots \frac{\partial x^{\mu_{n}}}{\partial x^{\mu_{n}^{\prime}}} \tag{1}
\end{equation*}
$$

For the above reason the proper Levi-Civita tensor is defined as

$$
\begin{equation*}
\varepsilon_{\mu_{1} \mu_{2} \cdots \mu_{n}}=\sqrt{|g|} \epsilon_{\mu_{1} \mu_{2} \cdots \mu_{n}} \tag{2}
\end{equation*}
$$

where g is the determinant of the metric $(0,2)$-tensor.
2. (3 pts.) Assume a given Lagrangian $\mathcal{L}=\mathcal{L}\left(\Phi, \partial_{\mu} \Phi\right)$ is invariant under translations of the coordinates ($x^{\mu} \rightarrow x^{\mu}-\epsilon^{\mu}$) of solutions to the Euler-Lagrange equations. By requiring invariance such invariance on \mathcal{L}, show that the following tensor,

$$
\begin{equation*}
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)} \partial_{\nu} \Phi-\delta^{\mu}{ }_{\nu} \mathcal{L}, \tag{3}
\end{equation*}
$$

referred to as an energy-momentum tensor, is conserved; meaning the following equation holds $\partial_{\mu} T^{\mu}{ }_{\nu}=0$.
Use the previous results for the case of a Lagrangian invariant under rotation of the coordinates, $\left(x^{\mu} \rightarrow x^{\mu}+w^{\mu}{ }_{\nu} x^{\nu}\right)$ where $w^{\mu}{ }_{\nu}$ is an arbitrary antisymmetric matrix. ${ }^{1}$
3. (2 pts.) From a finite collection of particles to a fluid. Consider an energy-momentum tensor of the form:

$$
\begin{equation*}
T_{\mu \nu}=\sum_{a} \frac{p_{\mu}^{(a)} p_{\nu}^{(a)}}{p^{0(a)}} \delta\left(\vec{x}-\vec{x}^{(a)}\right) \tag{4}
\end{equation*}
$$

Show that by smoothing over world-lines this tensor reduces to the perfect fluid one an isotropic velocity distribution.
4. (3 pts.) Study the electromagnetic theory Lagrangian plus the term $\mathcal{L}^{\prime}=\epsilon_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}$. Find its expression in terms of the classical fields \vec{E} and \vec{B}. How are the Maxwell equations modified by this? Show that \mathcal{L}^{\prime} is a pseudoscalar, meaning that it changes its sign under a parity transformation $x \rightarrow-x$. (+1 bonus pt.) Express \mathcal{L}^{\prime} as a total derivative.

[^0]
[^0]: ${ }^{1}$ This corresponds to an infinitesimal rotation, in other words they are elements of the Lie algebra of the group of rotations.

