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Exercise Sheet 11*

The solutions to the following problem set should be handed in by Monday the 22th of January at 8:30
a.m. at the postbox next to PH 3218.

Comoving coordinates and gravitational collapse of a perfect fluid. Part 2.

1. Using the field equations and the energy conservation equation derived in part 1

last week,
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(a) assuming the density function is position independent, solve for the metric
components by factorizing U and V in a product of a functions which are ¢-
and 7- dependent (Hint: to simplify things more, write the ¢ dependent
function as a square). Rescale the r coordinate conveniently to arrive to an
isotropic and homogeneous form for the metric:
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(b) impose that the spatial part of the metric is 1 when the coordinate time is 0
and that the contraction begins from rest. (Hint: parametrize the solution with
a cycloid) Express the density, p, in terms of initial data and continue to find
whether the spatial part of the metric vanishes for some finite ¢, meaning the
body has collapsed.

2. We know the exterior solution is fixed by Birkhoff’s theorem so that it can be cast
in the form:
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Our task now is to paste the solutions for both regions so that they match at the
surface of the body, given by the comoving radius » = a = constant.
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(a)

Bring the solution in the interior into the barred coordinates, to do that
determine the constants k,M and the relation between 7.t and r and ¢. You
don’t need to find an expression for the metric itself since it doesn’t have an
analytic expression. (Hint: Scale time so that you remove any cross-terms,
make a the integrating constant for the expression for ¢.)

How much time will it take the collapse to happen as seen for a coordinate
time observer at ¢t = t*.

Compute the redshift z = X — A\g/\g for an observer in the outer region at a
radius 7 = 7. How does the redshift behave for times close to the beginning of
the collapse?” How does it behave for longer times, “once it has collapse
entirely”.



