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Abstract

Right-handed neutrinos, also known as sterile neutrinos, with masses in the range of a
few keV could pose as a suitable dark matter candidate. One way to experimentally
access keV-scale sterile neutrinos is via a laboratory measurement of the β-decay
spectrum. An admixture of a heavy neutrino mass eigenstate to the electron neu-
trino, which is created in β-decay, would result in a kink-like spectral distortion
of the β-decay spectrum. With the TRISTAN detector upgrade, the KArlsruhe
TRItium Neutrino (KATRIN) experiment plans to extend its measurement range to
probe the entire tritium β-decay spectrum for such a sterile neutrino signature down
to the parts per million level. The main goal of this thesis is to show that Neural Net-
works (NNs) are a powerful method to detect this signature. In this thesis, multiple
NNs were trained to do Binary Classification (BC) on tritium β-spectra, including
statistical fluctuations and optionally experimental effects or other perturbations.
NNs are demonstrated to achieve a statistical sensitivity to the sterile parameters
that is comparable to that of more conventional χ2-based methods, corresponding
to an active-to-sterile neutrino mixing angle down to sin2(θ) = 2 × 10−7 for one
year of measurement at 95% confidence level (CL). It is demonstrated that the NN
approach is largely insensitive to experimental effects and their uncertainties, as well
as modelling inaccuracies that result in smooth spectral distortions.
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Chapter 1

Introduction and Objectives

When Fritz Zwicky observed the velocity dispersion of galaxies in the Coma clus-
ter back in 1933, he noticed that the motions he observed could only be explained
by a large amount of mass that could not be seen. He termed the invisible matter
"Dunkle Materie", which translates to Dark Matter (DM) [1]. Over the years, observ-
ables on many scales such as galaxy rotation curves, gravitational lensing effects and
anisotropies in the Cosmic Microwave Background (CMB) provided more evidence
for the existence and abundance of DM. Current results estimate that around 84%
of all matter in the universe is DM [2]. While there are hints for the particle nature
of DM, e.g. from observations of the Bullet cluster [3], its true nature is still largely
unclear. Promising particle candidates include Weakly Interacting Massive Parti-
cles (WIMPs), axions and sterile neutrinos [4]. These particles, however, are not
included in the Standard Model of Particle Physics (SM) and are a sign of physics
beyond the SM.

Additionally, the observations of neutrino oscillations indicate a non-vanishing
neutrino mass, opposite to the predictions of the SM. By extending the SM with
additional right-handed neutrinos, also known as sterile neutrinos, both the non-
vanishing neutrino mass and the true nature of DM can be explained. Within the
Neutrino Minimal Standard Model (νMSM), two sterile neutrinos with masses ex-
ceeding 1GeV are proposed to account for the small masses of the active neutrinos [5].
The mass of the third sterile neutrino, however, needs to lie in the keV-range or
slightly above to account for the observed dark matter density in the universe [6]. A
sterile neutrino does not participate in the weak, strong, and electromagnetic inter-
action. However, their signature can be detected in a laboratory-based experiment
due to their mixing with the three (active) left-handed neutrino flavors.

With the TRISTAN detector upgrade, the KATRIN experiment [7] will provide
an opportunity to search for keV-scale sterile neutrinos. KATRIN is designed and
currently operates to measure the neutrino mass through beta spectroscopy of the
gaseous tritium decay. The latest result yielded the world leading upper limit on
the neutrino mass of mν̄e < 0.45 eV (90% CL)1. After the neutrino mass mea-
surement campaign is completed at the end of 2025, the KATRIN beamline will be

1Here, and in the rest of this thesis, natural units (ℏ = c = e = 1) are used.
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Chapter 1 Introduction and Objectives

modified and upgraded with the TRISTAN detector system. While the kinematic
endpoint of the tritium β-electron energy spectrum was investigated with an integral
measurement for the neutrino mass campaigns, the search for keV sterile neutrino
will be conducted through a differential measurement covering nearly the entire tri-
tium spectrum. The TRISTAN detector and new data aquisition (DAQ) system
are equipped to handle the very high rates that result from the increased energy
range and provide their own energy resolution. In comparison to the neutrino mass
measurement, which is limited by statistical uncertainties due to the low count rates
at the endpoint, the keV sterile neutrino search is expected to be dominated by
systematic effects and their uncertainties.

The sterile neutrino signal is a distinct step-like distortion in the β-spectrum.
KATRIN has the statistical power to probe such distortions at the parts-per-million
level. Such signals can be overshadowed by the systematic effects and the uncer-
tainties associated to them, which act on the spectrum at the percent level and
therefore require very accurate modelling and robust uncertainty estimation. The
current modelling approach is constrained by excessive computational requirements
and inherent inaccuracies, which makes the sterile neutrino search on measured data
extremely challenging. Thus, the purpose of this thesis was to develop and inves-
tigate a "direct" search for the spectral distortion introduced by a sterile neutrino
using NN, which are known for their ability to discriminate complex patterns in
data [8, 9].

Chapter 2 of this work will give an overview on neutrino physics and sterile neutrino
dark matter. Then, chapter 3 introduces the KATRIN experiment and TRISTAN
detector upgrade, as well as the relevant systematic effects and their modelling.
Chapter 4 provides an overview on NNs and the analysis methods used in this work.
Chapter 5 then conducts sensitivity studies to assess how suitable NNs are for a
direct search of the sterile neutrino signature.
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Chapter 2

Neutrino Physics

The following chapter provides a short overview of the discovery of the neutrino
through electron β-decay (section 2.1). It then continues with the theory of neutrino
mixing and oscillations (section 2.2), which show that the neutrino is not a massless
particle. How the neutrino masses could be generated and measured is discussed
next (section 2.3). A sterile neutrino is a possible explanation for the neutrino mass
and can also serve as a dark matter candidate, which is further explored in the final
part of this chapter (section 2.4).

2.1 Historical Overview

The first observation of the energy spectrum of electrons emitted in radioactive β-
decay by J. Chadwick in 1914 [10] marks the dawn of neutrino physics. Back then, β-
decay was thought to be a two-body decay where the decaying nucleus only emits an
electron, which can then only receive a fixed decay energy due to energy-momentum
conservation. Thus, the energy spectrum was expected to be monochromatic. Chad-
wick, however, measured a continuous spectrum, which appeared to be violating
energy-momentum conservation, as seen in figure 2.1. The possibility of explaining
the observed spectrum by considering secondary effects that broaden a monoener-
getic line was ruled out several years later [11, 12]. W. Pauli postulated the solution
to this conundrum in 1930 [13]: By introducing a third electrically neutral particle
that is created along with the electron, β-decay turns into a three body process.
The energy of the decay is distributed among the decay products, explaining the
continuous energy spectrum of the electron. The third particle is the neutrino, and
is very evasive due to its lack of charge and would likely not manifest in calorimetric
measurements, while carrying away the missing decay energy. It should also have
spin-1/2 to conserve angular momentum. The discovery of further lepton generations
as well as the concept of lepton number conservation led to today’s name for this
particle, electron antineutrino (ν̄e).

3



Chapter 2 Neutrino Physics
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Figure 2.1: The continuous spectrum of the electron kinetic energy in β−-decay.
In contrast to that, the monoenergetic line spectrum at the kinematic endpoint
energy E0 is shown in green, which would be expected if β-decay were a two body
process.

Theory of β-decay

Following Pauli’s suggestion, the first theoretical description of β-decay was given by
E. Fermi in 1934 [14]. Here, a neutron is converted into a proton or vice versa, and
electrons and neutrinos (or their antiparticles) are created in a charge and lepton
number conserving manner. In practice, a neutron-rich nucleus N with atomic num-
ber Z decays to a more stable state by turning a neutron into a proton via β−-decay.
During the decay process, an electron e− and electron antineutrino ν̄e are created:

A
ZN

A
Z+1N

′+ e− + ν̄e +Q. (2.1)

The decay energy Q is the surplus energy after subtracting the masses of the elec-
tron and its antineutrino from the difference in binding energy of the mother and
daughter nucleus and the mass difference of neutron and proton. This energy is
distributed randomly to the daughter particles and manifests as their kinetic energy.
If, by chance, the neutrino is created almost at rest, the electron obtains the highest
possible kinetic energy denoted by E0 = Q−Erec, where Erec is the recoil energy the
daughter nucleus receives. The kinematic endpoint E0 is shifted towards lower ener-
gies in the case of a massive electron antineutrino, as Q will be further reduced by
the neutrino mass, thus lowering the highest possible kinetic energy for the electron,
as seen in figure 2.2. The reverse of this process also exists and is called β+-decay.
Here, a proton in a nucleus turns into a neutron whilst emitting a positron and an
electron neutrino.
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Figure 2.2: To account for an effective neutrino mass mν , the kinematic endpoint
of the electron β-decay spectrum is shifted towards lower energies, and the spectral
shape close to the respective endpoint is distorted.

In detail, Fermi describes β−-decay as a four-point interaction, meaning the spinor
fields that represent the incoming and outgoing particles directly couple with each
other without a mediating virtual boson. The modern understanding of this decay
is different, although Fermi’s four-point interaction can be seen as the low energy
limit of the Glashow-Weinberg-Salam (GWS) model, when the energies are not high
enough to resolve the propagator of the W±-Bosons. The GWS model is part of
the SM of particle physics and describes the electroweak sector. It shows that β−-
decay can be seen as the transition of a down-quark in a neutron to an up-quark
via an interaction with a W−-Boson, converting the neutron into a proton. The
virtual W−-Boson then creates an electron and an electron antineutrino, as can be
seen in figure 2.3.

The Weak Interaction

The weak interaction is mediated by the massive W±- and Z-Bosons, and thus β-
decay is also a consequence of the weak force, as well as every other neutrino produc-
tion mechanism. In 1957, the Experiment by C. S. Wu et al. discovered that the weak
force is not invariant under parity transformation of the spatial coordinates [16]. In
simpler words, the physics of a system are not the same when mirrored. The weak
force is the only fundamental interaction with this property. An isolated system’s
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Chapter 2 Neutrino Physics

Figure 2.3: The difference between Fermi’s four point interaction theory (a) and its
modern interpretation (b) for the first order Feynman diagrams of neutron β-decay.
In the latter, the decay happens through the transition of a down-quark into an up-
quark via emission of a virtual W− boson, which then decays into a lepton pair. The
left picture can be seen as an approximation of the right for energies much smaller
than the W -boson mass. Picture taken from [15].

overall parity is the product of the parities of its subsystems, and was thought to be
conserved when the system interacts. But, according to experimental results and the
theoretical considerations from Lee and Yang [17], the weak force only allows parti-
cles with left-handed chirality or antiparticles with right-handed chirality to couple
via the W-Boson. This built-in dependence on right- or left-handedness is not indif-
ferent to mirror reflections, and therefore maximally violates parity. This discovery
also had a big influence on the understanding of the neutrino in the SM. In 1958
M. H. Goldhaber et al. proved the helicity of the electron neutrino is negative [18],
meaning only left-handed neutrinos are produced in the SM. Massless particles, such
as the neutrino in the SM, move with the speed of light, and thus their chirality and
helicity are identical. The reason being that it is not possible for an observer to boost
to a reference frame moving faster than the spinning massless particle, which would
make the particle appear to move backwards and thus reverse its helicity. As neu-
trinos are exclusively produced in the weak interaction, they are always left-handed,
and consequently anti-neutrinos are always right-handed. In the SM, a massless
right-handed neutrino would not be able to interact with other SM particles and
would thus be called sterile.

In Fermi’s theory, the weak interaction is described only using a pure vector current
coupling to fermions, which preserves parity. Thus, to describe the interaction, the
"V-A" theory was introduced [19, 20]. It incorporates vector and axial vector currents
which have opposing parity and thus maximally violate parity.

6



2.1 Historical Overview

Discovery of the Neutrino

The electron antineutrino was finally experimentally discovered more than twenty
years after its first conception, by the groups of C. L. Cowan Jr. and F. Reines [21–
23]. They carried out their measurements at the Savannah river nuclear reactor,
which provides a large flux of electron antineutrinos to make up for how little they
interact. The electron antineutrinos ν̄e from the fission products interact with the
water target with dissolved cadmium chloride (CdCl2) and produce a positron e+

and a neutron n via inverse β-decay:

ν̄e + p e+ + n. (2.2)

The positron decelerates and annihilates with an electron almost immediately, creat-
ing two characteristic annihilation gamma rays, which are detected by the two scin-
tillation detectors that the target is sandwiched in between. The water moderates
the neutron until it is captured by the Cd, releasing delayed coincident de-exitation
radiation. In combination, these two events made it possible to discriminate strongly
against background and allowed to detect the electron antineutrino for the first time
with significant confidence.

Soon after Pauli’s hypothesis of the neutrino, the muon, which carries the second
lepton flavor, was discovered in 1936. Back then, the question arose if there exists
one universal neutrino associated to all lepton flavors or if there are three different
neutrino flavors corresponding to the three different leptons, as neutrinos are also
produced in other weak processes like pion decay:

π+ µ+ + νµ. (2.3)

This question remained unanswered until 1962, where M. Schwarz, L.M. Lederman
and J. Steinberger discovered the muon neutrino while studying cosmic radiation [24].
They found that the neutrinos in the decay of charged pions, which were created as
a consequence of shooting a 15GeV proton beam at a beryllium target, produced
muons via inverse beta decay,

ν̄µ
+ p n + µ+ (2.4)

but not electrons. The next advance came in 1975, where the tau lepton was dis-
covered [25], which naturally led to the postulation of a tau neutrino. The tau
neutrino would remain undiscovered until the turn of the millennium, when in
2000 the DONUT experiment at Fermilab finally confirmed the existence of the
last missing lepton in the standard model [26]. The reason this was known being
the 1989 ALEPH experiment at CERN, which showed that due to the width of
the Z-Resonance, there have to be three active light neutrino flavors that couple to
the Z-Boson [27].

7



Chapter 2 Neutrino Physics

Solar Neutrino Problem

The weak interaction is termed "weak" because its coupling constant is orders of
magnitudes lower compared to that of the electromagnetic force, which itself is over-
shadowed by the strong force. Consequentially, only about 1 neutrino in every 1012

undergoes an interaction with the nucleons in fluids used to detect neutrinos. To cir-
cumvent this limitation, enormous fluxes of neutrinos and large detection chambers
are needed for direct neutrino observation. A perfect candidate for a large neutrino
flux is the sun. These solar neutrinos are created from fusion processes in the sun’s
core, mainly via the pp-chain [28]. It consists of multiple subprocesses, which can be
summed up in the following reaction:

4 p + 2 e− 4He + 2νe + 26.73MeV. (2.5)

Thus, only electron neutrinos are created and propagate from the centre of the sun
to the earth. The solar neutrino flux was measured in 1968 by R. Davis Jr. using
inverse beta decay reactions with 37Cl and counting the number of 37Ar atoms [29]
that are created:

νe +
37Cl 37Ar + e−. (2.6)

Only approximately one-third of the expected 1.7 interactions per day were ob-
served [30]. This large deficit of electron neutrinos was coined the "solar neutrino
problem" after cross-validation with other experiments [31–33]. The pivot in this
problem was that Davis’ experiment was only sensitive to electron neutrinos and not
other neutrino flavors.

2.2 Neutrino Mixing and Oscillations

The Sudbury Neutrino Observatory experimentally solved the solar neutrino prob-
lem in 2001 by performing a measurement that is sensitive to not only the electron
neutrino but also the two other neutrino flavors [34]. They discovered that the large
fraction of solar electron neutrinos that was missing in the previous experiments was
made up by the other neutrino flavors, which means that some electron neutrinos νe
changed into muon neutrinos νµ and tau neutrinos ντ on their way towards the
earth. With their measurement, they confirmed the hypothesis that neutrinos can
oscillate between flavors during their propagation over long distances. These oscilla-
tions were later also observed on different length-scales by several other experiments
using neutrinos from nuclear reactors, cosmic ray interactions in the atmosphere and
particle accelerators [35–37]. The phenomenon of neutrino oscillations and conse-
quentially neutrino mixing is essential to understand why neutrinos have mass and
how a possible sterile neutrino signature looks like in a β-decay spectrum.
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2.2 Neutrino Mixing and Oscillations

2.2.1 Theory of Neutrino Oscillations

Neutrinos oscillate between flavors because their flavor eigenstates |νl⟩ (l = e, µ, τ)
are not equal to their mass eigenstates |νi⟩ (i = 1, 2, 3), which are the eigenstates
neutrinos propagate through space in. The mass eigenstates are a quantum mechani-
cal superposition of the flavor eigenstates and vice-versa. They can each be described
using the corresponding mixing amplitudes Uli:

|νi⟩ =
∑

l

Uli |νl⟩ and |νl⟩ =
∑

l

U∗
li |νi⟩ . (2.7)

From this description, it is easy to see that the mass eigenstates are simply rotated
with respect to the flavor eigenstates. This rotation is described by the complex 3×
3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, with the amplitudes Uli as
entries [38]: 


νe
νµ
ντ


 =



Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




︸ ︷︷ ︸
PMNS - matrix



ν1
ν2
ν3


 . (2.8)

Assuming this matrix to be unitary and that only three neutrino mass eigenstates
exist, the PMNS matrix can be parametrized using three different mixing angles
(θ12, θ13, θ23) and a complex phase δ, called the Dirac phase. As neutrinos only
partake in the weak interaction, the creation and detection of a neutrino corresponds
to a measurement of the flavor state, leading to a collapse of the superimposed wave
function into one of the flavor eigenstates. A neutrino is created in one of its flavor
eigenstates |νl⟩. It then propagates through time (and space). Assuming a plane wave
ansatz for the Schrödinger equation adds complex phases to the mixing amplitudes
of the mass eigenstates |νl⟩, which is made up of [38]:

|νl(t)⟩ =
∑

i

Ulie
−iEit |νi⟩ . (2.9)

Thus, each neutrino mass eigenstate picks up a species-dependent phase dictated
by its dispersion relation Ei =

√
p2i +m2

i ≈ p + mi
2E . Assuming the neutrino to be

relativistic, it is proportional to their mass eigenvalue m2
i . This is what ultimately

enables the flavor oscillations. As relativistic neutrinos travel close to the speed of
light c, we can set time t ≃ L, with L being the distance the neutrino travelled
(and c = 1). Pulling all this together, the transition probability between two flavor
states l and k after a distance L becomes [38]:

Pνl→νk(L,E) = | ⟨νk(L)| νl(0)⟩ |2

=
∑

ij

e−i(m2
i−m2

j )L/(2E)UkiU
∗
kjUliU

∗
lj . (2.10)

9



Chapter 2 Neutrino Physics

This probability only vanishes if the masses mi and mj are either zero or equal. It
is an experimental fact that neutrino oscillations occur between all three flavors [39–
42]. As a consequence, at least two of the three neutrino flavors have a different and
non-zero mass. The amplitude of the transition is dictated by the PMNS matrix
elements, which are themselves described by the mixing angles. When simplifying
the treatment to two neutrino flavor eigenstates connected via a single mixing angle θ
and with mass difference ∆m2 = m2

j −m2
i , equation 2.10 simplifies to [43]:

Pνl→νk(L,E) ≈ sin2(2θ) sin2
(
1.27 ·∆m2[eV2] · L[km]

E[GeV]

)
. (2.11)

Here, it becomes apparent the transition probability is sinusoidal as a function of
traveled distance L and directly connected to the size of the mass splittings. Un-
fortunately, as visible from equations 2.10 and 2.11, neutrino oscillation experiments
are only sensitive to the mass differences and not the absolute neutrino masses. In
conclusion, neutrino oscillation experiments provide information on the mixing an-
gles, Dirac phase and mass squared differences, which are evidence of a non-zero
neutrino mass. The question now being where the neutrino masses come from, and
how they can be experimentally probed, which will be covered in the next section.

2.3 Massive Neutrinos

To formulate possible explanations for the neutrino masses it is important to first
understand where other particles get their masses from and see why the neutrino is
taken to be massless in the SM.

2.3.1 The Standard Model

The SM includes two types of particles: The matter particles (fermions) and the force
carriers that mediate the interaction between the matter particles (bosons), as can be
seen in figure 2.4. The former all have spin 1/2 and are represented by spinor fields,
while the latter have to be subdivided into the vector bosons and a scalar boson. The
vector bosons have spin 1 and are described by vector fields, and the scalar boson,
more precisely called Higgs boson, has spin 0 and is described by a scalar field. It
is the Higgs bosons which gives mass to all elementary particles except the photon,
gluon and neutrinos, by a mechanism explained in the next section. A particle in
the SM can be seen as a quantized excitation of their respective field. Therefore,
the SM is fundamentally a quantum field theory. It is constructed on symmetries,
which lead to conserved quantities via E. Noether’s theorems [44]. Mathematically,
a symmetry is an operation that when performed on the Lagrangian of a system
leaves it invariant. Of particular interest are local gauge symmetries, which dictate

10



2.3 Massive Neutrinos

Figure 2.4: The different particles included in the Standard Model of particle
physics. The Interactions and their mediating bosons are indicated by the shaded
regions. Because the weak interaction does not conserve parity, only left-handed
neutrinos exist, which is indicated by the half circles. Figure adapted from [15].

the form of the interaction between matter and force carriers. The only interaction
that breaks the parity symmetry is the weak force, which will be further explained
in the following section.

2.3.2 Electroweak Force and Masses in the SM

The weak force is the only force that does not conserve parity and only interacts
with left-handed particles, as discussed in 2.1.

Chiral Structure of the Weak Force

To incorporate this dependence on the chirality of the particles, the SM is constructed
as a chiral theory, where the (spinor fields of the) left-handed fermions are grouped
in left-handed doublets and right-handed singlets. For the leptons, this results in the

11



Chapter 2 Neutrino Physics

following structure: (
e
νe

)

L

(
µ
νµ

)

L

(
τ
ντ

)

L

eR µR τR

(2.12)

The doublets are susceptible to SU(2) transformations and therefore the weak in-
teraction and are thus defined to be left-handed. Because the charged leptons also
partake in electromagnetic interactions, which conserve parity and consequently are
not chiral, they also have singlet representations which are invariant under SU(2)
transformations and therefore defined as right-handed. The right-handed singlets do
not partake in weak interactions.

The symmetries of the SM can also be broken, and there are different ways to
break a symmetry. An important example would be the inclusion of a mass term for
a lepton l to the SM Lagrangian, which would have the general shape

Ll
mass = −ml(l̄LlR + l̄RlL). (2.13)

This term would not be invariant under a SU(2)I3 ×U(1)YW
gauge symmetry, which,

if conserved, gives rise to the electroweak gauge vector fields (i.e. vector bosons)
and interactions with the weak isospin I3 and weak hypercharge YW as conserved
Noether charges. This is because the fields lL and lR belong to different SU(2)L
representations and have different U(1)Y hypercharges. Thus, is there any other
way to introduce mass terms to the SM Lagrangian without breaking this symme-
try? The key to this problem is so-called Spontaneous Symmetry Breaking (SSB).
SSB happens when only the vacuum configuration, meaning the field configuration
with the minimal energy (also called ground state), is not invariant under a certain
symmetry.

The Higgs Mechanism

In 1964, Higgs, Englert and Kibble introduced the Higgs mechanism, which provides
a method of giving gauge fields a mass while maintaining gauge invariance, all made
possible by SSB [45–47]. Later, Glashow, Weinberg and Salam applied the Higgs
mechanism to the aforementioned SU(2)I3 × U(1)YW

gauge symmetry, marking the
birth of the electroweak theory [48–51]. As the name suggests, this theory unifies
the electromagnetic and weak interactions above a certain energy threshold, char-
acterized by the transition temperature Tc ≈ 160GeV. Below this threshold, SSB
takes place, meaning the SU(2)I3 × U(1)YW

gauge symmetry is broken until only
the U(1)em symmetry of quantum electrodynamics (QED) remains. This process is
also called electroweak symmetry breaking. Pivotal for the Higgs mechanism is the
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Figure 2.5: The shape of the Higgs potential V (Φ) for different signs of µ2. For neg-
ative µ2, a degenerate family of minima is created, indicated by the blue circle. SSB
takes place when a particular point on the blue circle is chosen as a minimum.

shape of the Higgs potential, which depends on the complex scalar Higgs doublet Φ:

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2 with Φ =

(
ϕ0

ϕ1

)
(2.14)

with µ2, λ > 0, and ϕ0,1 denoting complex scalar Higgs fields. The potential is as
shown in figure 2.5, where the potentials minima, corresponding to the vacuum state,
are at Φ = 0 and a degenerate family of minima lie on a circle on the complex plane

of ϕ with modulus |⟨0|ϕ |0⟩| =
√

µ2

2λ ≡ v√
2
. The SSB takes place when a particular

direction in the internal SU(2) doublet space of the scalar Higgs field ϕ is chosen for
the minimum of the Higgs potential. The Higgs doublet Φ can then be expanded
around its new vacuum expectation value v ≈ 246GeV and written as:

Φ =
1√
2

(
0

v + ρ(x)

)
. (2.15)

Lepton Mass Generation

The Higgs field Φ after electroweak symmetry breaking can now be used to write
gauge invariant couplings linking lL and lR. These new additional terms in the
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Chapter 2 Neutrino Physics

Lagrangian are called Yukawa interactions. As an example, considering electrons
(l = e), the Yukawa interaction term becomes:

Le
Yukawa = − λe√

2

(
ν̄L ēL

)( 0
v + ρ

)
eR − λe√

2
ēR
(
0 v + ρ

)(νL
eL

)

= − λe√
2
v (ēLeR + ēReL)

︸ ︷︷ ︸
Le

mass

− λe√
2
ρ (ēLeR + ēReL)

︸ ︷︷ ︸
Le

int

, (2.16)

with λe being the Yukawa coupling for electrons, resulting in an electron mass
of me = λev√

2
. The product of the SU(2) left-handed fermion doublet with the

Higgs doublet results in a SU(2) singlet, making the individual terms invariant un-
der SU(2)I3 transformations. By defining the weak hypercharge of Φ to be YW = 1/2,
the hypercharges of the individual terms all sum to 0, making them also invariant
under U(1)YW

transformations. This mechanism is rigorously tested at the LHC,
and the experimental data agrees very well with this prediction [52]. Noticeably,
there are no mass terms for the neutrino, leading to it being treated as a massless
particle in the SM.

2.3.3 Mechanisms for Neutrino Mass Generation

A neutrino mass would introduce beyond the SM (BSM) terms into the Lagrangian.
There are different approaches to adding such a mass term.

Dirac mass term

The straightforward method of generating neutrino masses is to allow them to couple
to the Higgs field by introducing three right-handed SU(2) neutrino singlets:

(
νe
)
R

(
νµ
)
R

(
ντ
)
R

. (2.17)

If the neutrino fields νl are then treated as a spin-1/2 Dirac field (like e.g. the
electron), then a mass term may be generated identically to the other leptons in
the SM by a Yukawa term and the Higgs mechanism:

Lν
Dirac = − λν√

2
v (ν̄LνR + ν̄RνL) . (2.18)

The resulting term is called Dirac term, with the resulting mass being called Dirac
mass mD = λνv/

√
2. Because these right-handed neutrinos do not couple electro-

magnetically or to neutral or charged weak currents (being singlets under SU(2))
nor do they carry color charge, they are referred to as sterile neutrinos. However,
they do couple to the Higgs field, which provides them a mass and consequently
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2.3 Massive Neutrinos

allows them to interact gravitationally. The only way for these sterile neutrinos
to interact with other SM particles would be through mixing with the active neu-
trino flavors, by expanding the PMNS matrix, which will be further explained in
section 2.4. The main problems with this approach being that the right-handed
neutrino has not been observed in nature so far, and that e.g. direct neutrino
mass measurements like the KATRIN experiment constrain the effective antineutrino
mass to be below 0.45 eV (90% CL) [53], resulting in a Yukawa coupling constant
many orders of magnitude lower than that of other fermions like the electron or top
quark λνl ∼ λe · 10−6 ∼ λt · 10−12.

Majorana Mass Term

Alternatively, a neutrino mass term could be introduced without relying on a right-
handed neutrino. The prerequisite here being that neutrinos are their own antipar-
ticles and can thus be described via a spin-1/2 Majorana field. Neutrinos can be
their own antiparticles because they do not carry electric charge. This allows the
construction of mass terms that else would violate lepton number conservation:

LνL
Majorana = −mL

2

(
ν̄CL νL + ν̄Lν

C
L

)
. (2.19)

The superscript C denotes charge conjugation, which is the operation that turns
particles into antiparticles and vice-versa.

The neutrino being a Majorana particle does not exclude the existence of right-
handed neutrino singlets, thus also the following Majorana mass term is possible:

LνR
Majorana = −mR

2

(
ν̄CRνR + ν̄Rν

C
R

)
. (2.20)

This term in particular does not require any interactions with the Higgs field, allowing
the Majorana mass mR to be arbitrarily large.

Again, the problem with this approach is that there is still no experimental evi-
dence that the neutrino is actually a Majorana particle. A possible way to test this
is by observing the so-called neutrinoless double-β decay, which will be explained
briefly in section 2.3.4.

Seesaw Mechanism

The Dirac and Majorana mass terms above do not exclude each other and can be
combined and written compactly [38]:

Lν
mass = Lν

Dirac + LνL
Majorana + LνR

Majorana = −1

2

(
ν̄L ν̄CL

)(mL mD

mD mR

)(
νCR
νR

)
+ h.c.

(2.21)
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Using this mass term, the neutrinos Yukawa coupling can be made more compatible
with those of other particles while keeping the neutrino mass small. In order to
achieve this, the simplifying assumption that mL = 0 and mD ≪ mR is made. In
this scenario in particular, by setting mL = 0 it is assumed that the active neutrino is
not a Majorana particle. The eigenvalues of the resulting mass matrix then become

m1 =
m2

D

mR
and m2 = mR

(
1 +

m2
D

m2
R

)
≈ mR , (2.22)

leading to a small effective mass of the active neutrino m1 suppressed by the large Ma-
jorana mass associated with the sterile neutrino state mR. This means the bigger mR,
the smaller m1 gets, hence the name seesaw mechanism. To achieve active neutrino
masses on the sub-eV scale, the sterile Majorana mass needs to be O(100MeV) or
well above, depending on the details of the theory [54, 55]. This is only one of sev-
eral seesaw mechanisms, more detailed information on the other types can be found
in [56].

2.3.4 Neutrino Mass Measurements

As discussed in section 2.2.1, neutrino oscillation experiments are only sensitive to the
squared mass differences of the single flavors, and not the absolute mass scale. There
are mainly three ways to determine the absolute neutrino mass scale experimentally
and many experiments, several of which will be briefly mentioned in the following.

Cosmology

Cosmological structure formation in the early universe is heavily influenced by the
neutrino, due to their excess after the Big Bang. By acting as Hot Dark Mat-
ter (HDM), the relic neutrinos washed out structures on scales smaller than their free
streaming length, which depends on their mass [57]. The CMB reflects the anisotropy
of the matter distribution, and the respective scale at which these anisotropies
arise depends on the neutrino mass. Thus, by measuring the multipole spectrum
of the CMB a limit can be put on the sum of the neutrino masses mi:

mtot =
∑

i

mi < 0.39 eV (95% CL), (2.23)

additionally including observations from lensing and baryonic acoustic oscillations
further reduces the limit to mtot < 0.11 eV (95% CL) [2]. However, these limits
largely depend on dataset selection, cosmological model and analysis, making direct
laboratory-based measurements essential.
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2.3 Massive Neutrinos

Neutrinoless Double β-Decay

A neutrinoless double β-decay would be a direct indicator of the neutrino being a
Majorana fermion, with the half-life of the decay relating to the absolute neutrino
mass scale. Double β-decay happens in a select number of atoms in which single β-
decay is forbidden due to energy conservation, but the β-decay of two nucleons (here
e.g. neutrons) at once is allowed:

(Z,A) (Z + 2,A) + 2 e− + 2 ν̄e. (2.24)

This decay of two neutrons into protons raises the proton number Z by two and
creates two electrons and electron antineutrinos. If, however, the neutrino is a Majo-
rana particle and thus its own antiparticle, the two neutrinos are virtually exchanged
in the decay. As a result, no neutrino would be emitted, leading to the name of neu-
trinoless double-β-decay:

(Z,A) (Z + 2,A) + 2 e−. (2.25)

To detect this decay, the continuous double-β-decay spectrum is measured, searching
for a peak at the corresponding Q-value. So far, no such signal has been observed,
with the current leading half-life limit for the decay being set to T1/2 > 1.8 · 1026 s
(90% CL) by the GERDA experiment [58] using the double-β decay of 76Ge. The
half-life then relates to the effective Majorana mass of the neutrino mββ, which is a
coherent sum of the neutrino mass eigenstates. Here, the complex Dirac phase and
the two additionally introduced Majorana phases may lead to interference effects.
The above-mentioned half-life constrains the effective Majorana mass [58]:

mββ < 0.18 eV (90% CL). (2.26)

Direct Kinematic Measurement

A popular method for a direct kinematic measurement of the neutrino mass is beta
spectroscopy. Beta spectroscopy provides a model-independent and laboratory-based
way of measuring the neutrino mass. As previously outlined in section 2.1, a non-
zero neutrino mass would leave a distortion at the kinematic endpoint of the β-decay
spectrum, as seen in figure 2.2. The observable in this case being the effective electron
neutrino mass

mνe =

√∑

i

|U2
ei|m2

i . (2.27)

This is because current experiments only posses an energy resolution of O(eV), which
is too coarse to resolve the small mass splittings. The KATRIN experiment currently
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sets the lowest limit on the effective electron antineutrino mass using molecular
Tritium as β-emitter [53]:

mν̄e < 0.45 eV (90% CL). (2.28)

The experiment will be explained in more detail in section 3.

2.4 Sterile Neutrinos and Dark Matter

Motivated by the missing neutrino masses in the SM, so-called sterile neutrinos can
be introduced. These are beyond the SM particles, which do not interact directly via
any SM force. Right-handed neutrinos would be an example of such sterile neutrinos.
Since all other SM particles exist with both right- and left-handed chirality, they
seem to be a natural and minimal extension to the SM. Nonetheless, they are
flexible enough to explain numerous open questions. Very heavy sterile neutrinos
of up to O(1015GeV) could explain the small masses of the active neutrino flavors
using the seesaw mechanism outlined in 2.3.3, as well as give insight on the matter-
antimatter asymmetry in our universe [59]. Very light sterile neutrinos (O(eV)),
on the other hand, provide a solution to anomalies found in neutrino oscillation
experiments conducted over short distances, like the reactor anomaly [60]. However,
the focus of this thesis lies on sterile neutrinos with masses on a keV-scale, as they
are viable candidates for both Cold and Warm Dark Matter (WDM), depending on
their production mechanism in the early universe [61, 62].

2.4.1 Dark Matter

Around 84% of matter in our universe is DM [2]. As the prefix "dark" implies,
this type of matter does not interact with photons. Its presence, however, can be
clearly detected due to its gravitational interactions on many scales. DM explains
the rotation curves of spiral galaxies, the velocity dispersion in galaxy clusters, grav-
itational lensing effects, the structure formation in the early universe and resulting
temperature anisotropies of the CMB [4]. The true nature of dark matter is still
up to debate. The observation of the bullet cluster effect however strongly points
towards the particle nature of DM [63]. There are many possible candidates, like
supersymmetric particles, extra-dimensional particles or axions [4], but the focus of
this thesis will be on keV-scale sterile neutrinos.

2.4.2 KeV-scale Sterile Neutrinos

As mentioned above, keV-scale sterile neutrinos are sufficiently heavy and do not in-
teract directly with SM particles, making them excellent candidates for WDM. WDM
would alleviate shortcomings of most Cold Dark Matter (CDM) models on galactic
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(a) Primary decay channel (b) Secondary decay channel

Figure 2.6: Leading Feynman diagrams of sterile neutrino decay channels. The
primary decay channel of a sterile neutrino νs into three (active) neutrinos (a).
Secondary decay channel of a sterile neutrino νs to a lighter (active) neutrino flavor
under the emission of an X-ray. Figures taken from [6, 65]

sub-Mpc scale by explaining the smaller number of observed satellite dwarf galaxies
and the density profiles of low mass galaxies (cusp-core problem) [64]. The sterile
neutrino is made tangible by introducing additional mass eigenstates that mix with
the active neutrino flavors. Like in section 2.2.1, the mixing amplitude can be charac-
terized by a mixing angle or equivalently its squared sine, sin2(θ). This mixing allows
the heavy steriles to decay into active neutrinos. The main decay channel at energies
below twice the electron’s mass is νs ν̄ νν, dominating the sterile neutrino’s
lifetime. The Feynman diagram of the decay is shown in figure 2.6. To be DM, sterile
neutrinos have to be stable on a timescale larger than that of the universe, limiting
the frequency of this decay channel, and thus also the size of the mixing amplitude
of active-to-sterile mixing. An alternative, less dominant decay channel would be the
radiative decay νs νγ as illustrated in figure 2.6, leading to a monoenergetic
X-ray line at half the original sterile neutrinos mass. The non-observation of these
lines also constrain the mixing amplitudes. Some X-ray telescopes have detected
an otherwise unidentified X-ray line at 3.5 keV, which would correspond to a sterile
with m4 ≈ 7 keV [66]. However, more recent studies exclude the DM origin of this
line [67]. Again, the constraints on the sterile parameter space from cosmology are
often model dependent, making laboratory searches strongly necessary. The main
focus of this thesis is on such a laboratory-based search for keV-scale sterile neutrinos
using the KATRIN experiment, which will be thoroughly explained in the following
chapter.
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Chapter 3

The KATRIN Experiment and
TRISTAN Project

The KArlsruhe TRItium Neutrino (KATRIN) experiment was designed to measure
the kinematic endpoint of the Tritium β-decay spectrum to search for the effective
electron antineutrino mass mν̄e . The measurement is still ongoing, with recent results
setting the current world-leading upper limit mν̄e < 0.45 eV (90% CL) and a possible
final sensitivity of mν̄e < 0.3 eV [53] after 1000 days of data taking.

The effect of a mν̄e > 0 leads to a shape distortion at the kinematic endpoint
energy E0 of the spectrum. In this region only a small percentage of decays happen.
Therefore, an extremely luminous gaseous Tritium source achieving an activity of
up to 1011Bq [7] is needed. With such a strong source, still only (O(1 events/sec))
arrive at the detector. To be sensitive to an mν̄e in the eV mass range, a Magnetic
Adiabatic Collimation with Electrostatic filtering (MAC-E) spectrometer with an
energy resolution of O(1eV) is being used [7]. To achieve the sensitivity target,
the KATRIN neutrino mass experiment plans to continue data taking until 2026 for
a total amount of 1000 days of β-spectrum measurements. After the neutrino mass
measurement is completed the KATRIN collaboration plans to upgrade the KATRIN
detector and DAQ section to perform a keV-scale sterile neutrino search.

For measuring deeper into the Tritium β-decay spectrum, the Focal Plane De-
tector (FPD) currently in use can not handle the higher count rates. Additionally,
the energy resolution of the FPD is not good enough to be used in a differential
measurement. This is why once the neutrino mass measurements are concluded,
the FPD will be exchanged with the TRISTAN detector along with other changes to
the KATRIN beamline. This is called the TRISTAN upgrade. The TRISTAN detec-
tor is a Silicon Drift Detector (SDD), which provides a better energy resolution and
can handle higher rates, enabling the search for sterile neutrinos with m4 ≤ 18 keV
at a potential sensitivity of |Ues|2 = sin2(θ) ∼ 10−6 for the mixing angle [68].

The following chapter starts with the introduction of the measurement principles
for a neutrino mass and sterile neutrino measurement (section 3.1). Next, it out-
lines the KATRIN experiment (section 3.2). Afterwards, the TRISTAN detector
upgrade and beamline changes for a sterile neutrino measurement will be detailed in
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section 3.3. Finally, the most important systematic effects and how they are modelled
for TRISTAN using the package TRModel will be explained in section 3.4.

3.1 Tritium β-Decay

As outlined in section 2.3.4, the KATRIN experiment utilizes the decay of gaseous
molecular Tritium (T2) into Helium-3 (3He) as a source of β-decay electrons:

T2 T3He+ + e− + ν̄e +Q(T), (3.1)

with Q(T) being the surplus energy stemming from the mass difference between T
and He+. This energy is then distributed among the three decay products, ac-
counting for the neutrino’s and electron’s kinetic energy and mass, and the re-
coil energy of 3He+. The recoil energy is relatively small because 3He+ is heavy
compared to the other decay products, peaking at 1.72 eV at the kinematic end-
point E0 = 18.6 keV [69]. Using T2 has several advantages [70]. The decay is
super-allowed, meaning it has a low half life of 12.33 years and thus a comparatively
large activity, allowing to gather more statistics faster. Additionally, the kinematic
endpoint energy for T2 is low enough to emphasize the neutrino mass signature and
allow for spectrometry using the MAC-E filter. Using Fermi’s Golden Rule, the
shape of the nuclear β-electron energy spectrum can be calculated [70], from which
emerges that

(
dΓ

dE

)

β

∝
∑

i

|Uei|2
√

E2
ν −m2

i with Eν = E0 − E. (3.2)

This means that the measured β-decay spectrum is a superposition of the spectra
of the individual neutrino mass eigenstates mi, with the squared PMNS-Matrix el-
ements Uei, or equivalently mixing-angles, as respective weights. This is illustrated
in figure 3.1.

As the neutrino mass differences ∆m2 are much smaller than the experimental
resolution of O(1 eV), the individual spectra can not be resolved [71]. Instead, the
spectral shape is simplified to an effective weighted neutrino mass:

m2
ν̄e =

∑

i

|U2
ei|m2

i . (3.3)

The KATRIN experiment has managed to set an upper limit of mν̄e < 0.45 eV
(90% CL) [53].

Searching for a sterile neutrino signature

If there were now an additional sterile neutrino eigenstate m4, with a mass in the keV
range, that mixes with the three masses of the active neutrinos under an angle
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Figure 3.1: The total Tritium β-electron energy spectrum (black) as sum of the
individual differential decay spectra of the neutrino mass eigenstates dΓ

dE (mi) scaled
by their mixing amplitudes |Uei|2 (red, green and blue). For KATRIN, the individual
neutrino masses mi are too small to be resolved experimentally. This simplifies the
observed spectral shape to an effective weighted neutrino mass, differing from the
one shown above. The neutrino masses and mixing amplitudes are chosen arbitrarily
for illustrative purposes.

of sin2(θ), an additional term would appear in the differential decay rate. Like
in figure 3.1, this results in a spectrum scaled by the mixing amplitude |U2

e4| and
with a kinematic endpoint at E4 = 18.6 keV − m4 being added to the β-decay
spectrum. This is shown in figure 3.2. Thus, a keV sterile neutrino leaves a kink-
like signature on the tritium β-decay spectrum, with the location depending on
its mass m4 and the size of the effect depending on the sterile-to-active mixing
amplitude sin2(θ). An experiment using tritium β-decay is therefore sensitive to
sterile neutrino masses m4 < 18.6 keV. With the TRISTAN detector upgrade for
the KATRIN experiment the collaboration explores the possibility of reaching a
sensitivity to mixing angles down to O(10−6), which surpasses current laboratory
limits by more than two orders of magnitude.
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Figure 3.2: The differential Tritium β-electron energy spectrum when adding a
sterile neutrino mass eigenstate m4. The additional eigenstate mixes with the active
neutrinos’ mass eigenstates m1,2,3 under an amplitude |Ue4|2 = sin2(θ). This adds a
decay branch (blue) with a kinematic endpoint at E4 = E0 −m4. The KATRIN ex-
periment is possibly sensitive to m4 ∈ (0, 18.6) keV. The "kink"-like shape distortion
the sterile neutrino eigenstate introduces to the spectrum changes depending on the
mass and mixing amplitude of the sterile neutrino mass eigenstate. The magnitude
of sin2(θ) is exaggerated for illustrative purposes and m4 is set to an exemplary value
of 10 keV.

3.2 KATRIN Experiment

The goal of the KATRIN experiment before the TRISTAN detector upgrade is to
search for an effective electron antineutrino mass by measuring the kinematic end-
point of the Tritium β-spectrum. Parts of the experimental setup discussed in the
following will change for the TRISTAN detector upgrade. These changes are high-
lighted in section 3.3. The KATRIN experiment is composed of five main parts.
Electrons are produced in the Windowless Gaseous Tritium Source (WGTS) via Tri-
tium β-decay, detailed in section 3.2.1. The electron emission angle is isotropic, thus
half of the β-electrons travel downstream and half upstream, guided by magnetic
fields. The upstream electrons meet the Rear Wall. (RW), where the beamline ter-
minates, which is outlined in section 3.2.2. The downstream electrons pass through
the transport and pumping section explained in section 3.2.3, where the remainder of
the gaseous tritium is pumped away. They then enter the Main Spectrometer. (MS),
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3.2 KATRIN Experiment

Figure 3.3: Illustration of the KATRIN beamline and its working principle. In
the upper part the different components of the experiment are shown. In the lower
part the electron momentum with respect to magnetic field line is given. The blue
lines illustrate possible paths of the electrons inside the experiment. Figure taken
from [72].

where all electrons below a certain threshold are filtered, covered in section 3.2.4.
Finally, the remaining electrons arrive at the detector, which will be detailed in sec-
tion 3.2.5. The entire beamline and working principle is illustrated in figure 3.3.

3.2.1 Source Section

The main component of the source section is the WGTS. The WGTS is a 10m long
tube with a diameter of 9.0 cm filled with high-purity molecular tritium gas. The
reference column density is 5.0×1017 molecules/cm2, resulting in an activity of 1.7×
1011Bq. The tritium decays and β-electrons are adiabatically guided towards the RW
section and the transport section using a homogeneous magnetic field of up to 3.6T,
generated by superconducting solenoids. The tritium can not be contained in the
source using a solid window since the interaction of the electrons with the material
would lead to an energy distortion larger than the imprint of the neutrino mass. As
a consequence, the tritium molecules can freely diffuse from the middle of the tube,
where they are injected. They travel towards both ends, where they are pumped out.
This ensures an ultra-high vacuum at the spectrometer. The resulting density profile
can be seen in figure 3.4. The constant gas injection keeps the tritium purity stable
at > 95%. The WGTS is enclosed by a cryostat, cooling the tube and gas down
to a constant 30K. This reduces Doppler broadening through the thermal motion
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Figure 3.4: The setup of the WGTS, with an approximate longitudinal tritium
density distribution (top). By injecting low temperature tritium at the center and
pumping out the tritium that drifted towards the ends, the density profile is kept
constant. Figure taken from [7].

of the gas molecules and therefore the tritium throughput necessary for maintaining
the right tritium density at relatively low pressure [73]. Both the temperature and
the column density are kept stable with fluctuations of less than 0.1%/h [74].

3.2.2 Rear Wall Section

The creation of charged particles in β-decay and subsequent processes like scattering
in the source leads to the development of a cold and strongly magnetized plasma
with an electric plasma potential at the meV scale. This starting potential needs to
be homogeneous such that it does not interfere with the electron energy measure-
ment. The RW can be used to determine and manipulate the starting potential. The
magnetic field lines from the upstream end of the WGTS are mapped onto the RW,
leading to charged particles being transported to the RW. By suitably modifying
the RW potential, taking the WGTS and RW work functions into consideration,
homogeneous plasma conditions can be established. For the neutrino mass measure-
ments, a gold-plated steel disk with a diameter of 14.5 cm held at a small bias voltage
is used as a RW. Because the electrons in tritium β-decay are created with isotrop-
ically distributed momenta, only half of the electrons in the WGTS have momenta
pointed towards the detector, with the other half being pointed towards the RW.
This leads to many electrons reaching the RW and backscattering at the RW disc.
These electrons lose energy in the backscattering process. They are subsequently
filtered out by the MS when set to a high potential. Behind the RW disc, there is
also the Calibration and Monitoring System (CMS), including an electron gun as

26



3.2 KATRIN Experiment

well as a mount for radioactive calibration sources. These can be used to measure
the transmission function and perform other calibration measurements.

3.2.3 Transport Section

The transport section fulfills two purposes. On the one hand, it adiabatically trans-
ports the β-electrons from the WGTS downstream to the MS using magnetic fields
of up to 4T. On the other hand, it stops tritium gas from entering the spectrometer
section by reducing the tritium flux to below 10−14mbar · 1/s. This prevents tritium
molecules from decaying in the spectrometer section and thus adding additional
background.

Two pumping sections achieve such a low tritium flux: The Differential Pumping
Section (DPS) and the Cryogenic Pumping Section (CPS). After leaving the WGTS,
electrons and tritium molecules first travel through the DPS. It consists of five beam
tubes and superconducting magnets that are tilted by 20◦ with respect to each other.
This makes tritium molecules hit the walls more often, increasing the likelihood for
them to be pumped away by the four turbomolecular pumps, whilst the light electrons
are guided through the corners by the magnetic field. The DPS reduces the tritium
flux by at least seven orders of magnitude.

The CPS lies further downstream, right after the DPS and removes the remaining
tritium flux. The CPS follows the same chicane pattern as the DPS with six turns.
As the turbomolecular pumps cannot further reduce the tritium flux, the CPS is
cooled to 3K with liquid helium to create a cold trap. The efficiency of this tritium
trap is increased further by coating the inside with an argon frost layer to which
the gas molecules adhere upon impact. After passing through the DPS and CPS,
the β-electrons move on to the spectrometer section.

3.2.4 Spectrometer Section

The spectrometer section is divided into the Pre-Spectrometer (PS) and the MS,
where the latter is used for β-scanning. The Main-Spectrometer is 23.38m long
and has a diameter of 9.8m at its widest point. It is operated at an ultra-high
vacuum of 10−11mbar. Both spectrometers utilize the principle of MAC-E, which
is illustrated in figure 3.5 [75, 76]. In a nutshell, the MAC-E filter only allows β-
electrons above a certain kinetic energy set by the maximum retarding potential to
pass, with the rest being reflected back. The electrons kinetic energy manifests in
their momentum, which is distributed isotropically upon their creation in the WGTS,
meaning only a fraction of its total momentum is parallel to the magnetic field
lines. When employing a retarding potential, only the projection of the electron
momentum that is parallel to the electric retardation field is affected. Thus, using
only a retarding potential to block electrons below a certain energy would result in
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Figure 3.5: Illustration of the MAC-E filter principle utilized in the MS of KATRIN.
The β-electrons are guided adiabatically along the magnetic field lines, performing
cyclotron motion. The magnetic field is drastically reduced towards the analyzing
plane. This leads to the alignment of the electron momentum with the magnetic
field and thus converts most of their transversal momentum into parallel momentum,
as visualized by the blue arrows. Here, the electric retarding potential is maximal,
allowing only electrons with sufficient parallel momentum to pass (track a). Electrons
with insufficient parallel momentum are reflected (track b), while electrons that are
created inside the spectrometer volume may remain trapped by the magnetic mirror
effects at both ends (track c). Figure taken from [7].

many more electrons being blocked than intended. This is because only the ones
with high enough kinetic energy and momentum that is close to parallel to the field
lines by chance will be able to pass. Here, the "MAC" part of the MAC-E filter
comes into play. Using magnetic adiabatic collimation, the electron momenta can
be aligned with the magnetic field lines without affecting the total energy of the
electrons.

Electrons travelling along a magnetic field perform cyclotron motion, where the
component of its momentum that is perpendicular (p⊥) dictates the cyclotron radius.
In an adiabatic motion in a magnetic field, the magnetic moment µ of the electron’s
cyclotron motion is conserved:

µ =
e| #»

l |
2me

=
p2⊥

2meB
=

E⊥
B

= const. (3.4)

where E⊥ is the transversal kinetic energy of the electron. It can be written in terms
of the pinch angle θ = ∠( #»p ,

#»

B) between the electron momentum #»p and the magnetic

28



3.2 KATRIN Experiment

field
#»

B as E⊥ = E ·sin2(θ). If the magnetic field strength B is reduced, p⊥ also has to
decrease in order for µ to be conserved. Consequentially, the pinch angle is decreased
and which leads to an increase in E∥ = E · cos2(θ). Thus, to achieve that E∥ ≈ E,
the field strength at the entrance of the spectrometer should be as large as possible,
while the field strength in the analyzing plane, where the electric retarding potential
is maximal, should be as small as possible. It would make sense to use the smallest
possible magnetic fields to maximize this effect. There is a caveat, however, because
the magnetic flux

Φ =

∫
#»

B · d #»

A (3.5)

needs to be conserved. Consequently, in parts of the beamline where the magnetic
field decreases, the area of the cross-section of the flux, also called flux tube, needs to
increase. Therefore, the lower the minimal magnetic field strength is in the analyzing
plane, the larger the diameter of the spectrometer has to be.

The energy resolution of the MAC-E filter is therefore determined by the remaining
perpendicular component of the momentum p⊥, or equivalently E⊥, which depends
on the minimum and maximum magnetic field strengths that are applied:

∆E = E · Bmin

Bmax
. (3.6)

Using the KATRIN design field values of the MS, Bmax = 6T at the pinch magnet
located directly at the entrance to the MS, and Bmin = Bana = 3×10−4T located at
the middle of the spectrometer in the analyzing plane, results in an energy resolution
of 2.7 eV at the tritium kinematic endpoint [7]. Magnetic flux conservation requires
that the MS has a radius of ∼ 5m. The complete magnetic and electric field setup
along the beamline can be seen in figure 3.6.

The magnetic adiabatic collimation effect is also relevant when considering the
propagation of an electron from the source to the pinch magnet. As the source
magnetic field strength Bsrc is typically smaller than the pinch magnetic field Bmax,
the electron momentum perpendicular to the magnetic field lines p⊥ will increase
(and analogously p∥ will decrease) along its way to the pinch magnet. If now the
electrons initial pinch angle at the source is large enough, it is possible for the pinch
angle to grow beyond 90◦ during its propagation to the pinch magnet and the electron
to be reflected. This is called the magnetic mirror effect. Thus, there is a maximum
initial angle θmax that an electron can have and still be transmitted towards the
detector:

θmax = arcsin

(√
Bsrc

Bmax

)
. (3.7)

In the current KATRIN field setting, θmax = 50.4◦ [73]. The PS was used to lower
the flux of electrons arriving at the MS by pre-filtering at a retarding potential
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Figure 3.6: The electromagnetic field configuration of KATRIN. The upper plot
shows the magnetic field strength, the bottom plot shows the electric potential. The
middle plot shows a cross-section of the beamline geometry, viewed from the top.
Here, beam tube elements and electrodes are shown in black, magnets in green and
the mapping of the flux tube to the detector in blue. Figure taken from [15].

of 10 kV, but its operation has led to unwanted magnetic trapping effects between
the spectrometers [7]. Electrons caught in these traps need to scatter and therefore
loose energy to escape. Electrons that have an initial pinch angle lower than θmax
and a kinetic energy above the electrostatic retarding potential are transmitted to
the detector, which is detailed in the next section.

3.2.5 Detector Section

After passing through the analyzing plane, the β-electrons are guided towards the
detector section and get an energy boost of 10 keV by a Post-acceleration Elec-
trode (PAE), before they hit the FPD. The PAE reduces detector systematics like
backscattering and shifts the spectrum to an energy region with lower background.
The FPD consists of 148 silicon pin diodes, which are arranged in 12 rings counting
12 pixels each, plus an additional 4 pixels in the center, as visible in figure 3.3. The
total rate limit for the FPD is approximately 106 cps, and the energy resolution is
approximately 1.5 keV at full-width half maximum (FWHM) [7]. In the effective elec-
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tron antineutrino neutrino mass measurement with KATRIN the FPD only counts
electrons and is therefore sufficient.

3.2.6 Latest KATRIN Results

In the latest KATRIN neutrino mass publication, the results of the first two physics
runs are included. Here, the spectral shape of the integral spectrum was obtained
by measuring the count rate for 39 different MS retarding potential qUret settings
in the interval [E0 − 300 eV, E0 + 135 eV] around the tritium endpoint energy E0.
In the final 40 eV of the integral tritium spectrum, a total of 3.7 × 106 β-electrons
were detected.

To obtain the squared effective antineutrino mass m2
ν̄e and kinematic endpoint

energy E0, a spectral fit is performed on the measured data with a model predic-
tion. Only 28 of the original 39 points in the interval [E0 − 40 eV, E0 + 135 eV]
were used for the spectral fit, with the remaining points at lower energies serving
as an indicator for the activity stability. The integral spectrum model is calculated
by convolving the theoretical differential decay spectrum dΓ

dE with the instrumental
response function R(E − qUret):

Ṅ(qUret;E0,m
2
ν̄e) = As ·NT,eff

∫ E0

qU

dΓ

dE
·R(E − qUret)dE +Rbg, (3.8)

with the signal amplitude As and background rate Rbg treated as nuisance param-
eters. The normalization factor NT,eff describes the effective number of tritium
atoms in the source. The response function represents the transmission probability
of an electron from the source to the detector given a surplus energy E − qUret,
and depends on various systematic parameters. More detailed information on the
modelling of the response function, can be found in [69].

The resulting best fit value or the squared effective antineutrino mass m2
ν̄e =

−0.14+0.13
−0.15 eV

2 results in an upper limit for the mass of mν̄e < 0.45 eV
at 90% CL [53]. This is the currently world leading limit on the effective neu-
trino mass, and can be seen in comparison to other experiments’ results in figure 3.7.
With a final dataset including 1000 days of live measurements, the KATRIN exper-
iment can reach a sensitivity of 0.3 eV at 90% CL [53]. After these measurements
are concluded, the TRISTAN detector upgrade will be installed for the keV-scale
sterile neutrino search.
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Figure 3.7: Comparison of the best-fit values from the first two KATRIN neutrino
mass campaigns with previous neutrino mass experiments. Figure taken from [73].

3.3 keV-Scale Sterile Neutrino Search with the TRISTAN
Detector Upgrade

The goal of the TRISTAN detector upgrade of the KATRIN collaboration is to search
for the signature of a keV-scale sterile neutrino signature in the β-electron energy
spectrum of tritium (see 3.1).

The KATRIN experiment is a good fit for the keV-sterile neutrino search, as proven
by a commissioning run performed form 2018. Here, the tritium β-electron energy
spectrum was measured from the kinematic endpoint down towards E0 − 1.6 keV =
17 keV, thus being sensitive to sterile neutrinos with a mass of up to 1.6 keV. No
sterile neutrino signal was found and an exclusion limit on the sterile-to-active mix-
ing amplitude of sin2(θ) < 5 · 10−4 (95% CL) was determined [77]. This run was
performed in integral measurement mode, with the MAC-E filter turned on and pro-
viding the energy resolution by lowering the retarding potential iteratively. The main
problem when measuring deeper into the spectrum are the increasing count rates.
Thus, for the FPD to be able to handle rates still relatively close to E0, the column
density had to be reduced accordingly.

To be sensitive to larger sterile neutrino masses, the measurement range has to be
increased further into the tritium β-spectrum. Therefore, in the TRISTAN setting,
the MAC-E filter is set to a much lower retarding potential. As a consequence, the
rate of electrons arriving at the detector will be many orders of magnitude higher than
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the FPD can handle, facilitating the need for an alternative detector. Additionally,
because the MAC-E filter is not varied in a differential measurement, the such a
detector has to provide an energy resolution itself, as will be further detailed in the
following section.

The TRISTAN SDD combines both of these aspects, and was developed by
the KATRIN collaboration for the keV-scale sterile neutrino search. Accompanying
it are other changes to the KATRIN beamline and operation, which are explained in
the following section.

The TRISTAN Configuration

The elementary change to the KATRIN setup is the addition of a new detector
and DAQ system, which will mainly measure the differential and not the integral
spectrum. That means the energy resolution of the β-electron energy spectrum is
provided by the detector itself and not by varying the retarding potential of the MS
and measuring the respective count rates. It was demonstrated that with an energy
resolution of 300 eV at a β-electron energy of 20 keV [68] no sensitivity loss will be
observed, in contrast to the FPD’s aforementioned energy resolution of ≈ 1.5 keV
at an electron energy of 18.6 keV and no significant improvement towards higher
energies [78].

Additionally, the MS will operate on a very low retarding potential in the range
of approximately 500 eV, with the exact value still up to debate, and thus allow
measuring much deeper into the tritium β-decay spectrum, as illustrated in figure 3.2.
This is needed to detect larger sterile neutrino masses m4, because the sterile neutrino
signature shifts further away form the kinematic endpoint for increasing m4, as
visible in figure 3.2. Looking at the spectrum, the differential decay rate increases
by several orders of magnitude moving from higher to lower β-electron energies. The
TRISTAN detector system is designed to handle count rates of up to O(108 CPS).
The detector is segmented into O(1000) pixels, which lowers the electron count rate
each pixel needs to handle to O(105cps) [68]. To meet these requirements, the
TRISTAN detector is designed using the SDD technology.

Silicon Drift Detectors

SDDs consist of the semiconductor material silicon, doped with electron donor
atoms ("n-type"). An SDD is based on the principle of sideward depletion. It
uses a slightely n-doped silicon wafer as a base material. To create the depletion
zone the entrance window side is heavily p-doped. On the opposite side, where the
electronic readout lies, a small heavily n-doped anode is placed in each pixel. A
negative bias voltage is applied to create a large depletion zone, which serves as
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the active detector volume. Energy depositions of incident ionizing particles, such
as a β-electron, create electron-hole pairs in the depletion zone. The TRISTAN
detector has the goal to measure β-electrons, which will therefore be focus in the
following. The incident β-electrons enter from the solid p-doped back-contact and
create electron-hole pairs in the depletion zone. The number of electron-hole pairs
depends on the energy the incident electron deposits in the depletion zone and the
material average energy needed to create a single electron-hole pair. These electrons
have to be guided to the anode to create a measurable signal. This is achieved by
p-doped junctions on the opposite side (the detector readout side) that are seg-
mented into concentric drift rings with a small n-doped anode in the middle, which
is connected to the read-out electronics. The drift rings are biased such that they
generate an electric field with a strong component parallel to the surface, causing
the electrons to drift towards the anode, whereas the holes are collected at the back
contact or the drift rings. The working principle of an SDD is shown in figure 3.8.

The small physical dimensions of the anode allow the detector to only have a small
capacitance almost independent of the detector area, resulting in a better energy
resolution and faster rise times compared to a conventional PIN-diode. This enables
the construction of large pixels while maintaining an optimal energy resolution close
to the Fano limit, while the fast rise times allow better event separation and thus
enables the detector to handle higher rates. In addition, the electronic noise can
be reduced by cooling down the detector. As shown in [68], an electronic noise
of 9.9 erms can be achieved with temperatures as high as −35 ◦C. This is sufficient
for the keV-scale sterile neutrino search [79].

Multiple SDD pixels are grouped onto a detector chip, where the limiting factors
are complexity and cost [80]. A single TRISTAN detector chip, also called detector
module, consists of 166 pixels. The pixels have a hexagonal shape and cover a 4 cm×
4 cm area. Central to the design of the detector modules is the non-planar geometry
with a front-facing SDD chip, allowing for the side-by-side arrangement of modules.
The detector for the first measurement phase will consist of 9 detector modules,
as visible in figure 3.8. This offers a total of 1264 obstruction free pixels. From
these, 936 are inner pixels that should receive an even illumination with electrons.
To handle the high count rates the new detector is capable of, a new data acquisition
(DAQ) system is currently being developed.

In addition to the new detector system and the MS operation at low retarding
potentials, some other changes to the beamline will be employed.
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(a) Schematic drawing of a cylindrical silicon drift detector with an exemplary electron drift
path towards the anode shown in blue. The p-doped back contact and the drift rings that
create the electric field are shown in red. The collecting anode and the integrated amplifying
transistor in the center of the device are shown in green. Figure from [80].
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(b) CAD drawing of the planned arrangement of nine TRISTAN detector modules, con-
taining 166 pixels each. Figure from [81].

Figure 3.8: Schematic drawing and illustration of the actual implementation of
an SDD in TRISTAN.
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Further Changes

To lower the impact of systematic uncertainties on the TRISTAN sensitivity, the
following additional changes are made to the KATRIN beamline [15, 82]:

• the magnetic field settings are being optimized to reduce systematics like de-
tector and rear wall backscattering,

• the column density will be reduced to around 1% of the nominal value to keep
an input rate per pixel of 105 CPS,

• a new post acceleration electrode allowing acceleration voltages of up to 20 keV
is being developed to reduce detector systematics like backscattering, pileup
and dead layer effects,

• and finally, other materials and structures are being considered for the rear
wall to reduce the contribution of the spectrum stemming from the RW to the
normal tritium spectrum. Because the MS will be operated at low retarding
potentials, many of the electrons backscattering at the rear wall will be able to
reach the detector even after loosing some energy, and the backscattering prob-
ability at the current gold-plated rear wall is very high. Consequentially, the
normal tritium spectrum and the spectrum emitting from the RW superimpose,
reducing the sensitivity to the sterile neutrino signature.

An overview of the different systematic effects will be given in the next section.

3.4 Systematic Effects and their Modelling

When measuring the tritium spectrum using the TRISTAN setup, significant
deviations from the raw theoretical predictions will be observed. This is due to
experimental effects that distort the decay spectrum. To describe these effects, new
parameters are introduced, which usually carry systematic uncertainties. Thus, on
top of the statistical uncertainties each measured data point is subject to these
systematic uncertainties. Unlike statistical uncertainties, which decrease with more
data, systematic uncertainties do not necessarily decrease with longer measurement
times.

By conducting a measurement deep into the tritium spectrum, even with the
activity of the source being reduced by a factor of approximately 200, many more
events will be detected than in the endpoint measurement, pushing the statistical
sensitivity limit down very quickly [83]. The systematic uncertainties however are not
mediated directly by larger rates. The latest investigation shows that the systematic
uncertainties reduce the sensitivity of TRISTAN by at least one order of magnitude
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if the same beamline settings as for the neutrino mass measurement are used [84]. A
prediction of the statistical sensitivity, compared to the previous KATRIN result and
other limits is shown in figure 3.9. Therefore, it is fundamental that the systematic

Figure 3.9: Statistical sensitivity prediction for the TRISTAN detector upgrade,
compared to previous laboratory and cosmological limits and the predicted sensitivity
of the HUNTER project [85]. Plot adapted from [84].

effects and their uncertainties themselves, as well as the effect they have on the
differential decay spectrum and TRISTANs final sensitivity limit are understood.

In the following, several of the systematics will be detailed:

Tritium Decay

The decay energy of β-electrons follows the predictions of Fermi’s theory of weak
decay, with a few corrections.

• Atomic corrections: charge shielding effects and nuclear recoil, both subject to
theoretical uncertainties, must be considered in the calculation of the differen-
tial energy spectrum.

• Final state distribution: the tritium decay daughter molecules may be excited
to rovibrational final states with a certain probability, which is energy depen-
dent.

Rear Wall

Due to the isotropic distribution of the β-electron momenta, half of the electrons
created in the source head towards the rear wall instead of the detector. Electrons
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coming back from the rear wall are also more likely to scatter on their way to the
detector.

• Backscattering: the electrons hitting the rear wall can scatter back while loos-
ing a part of their energy and changing their pitch angle. In the neutrino mass
measurement where the MS is operated at a high retarding potential qUret,
electrons with an initial energy close to 18.6 keV are typically reflected. For
the keV-scale sterile neutrino search KATRIN is operated at much lower qUret.
Thus, depending on the electrons pinch angle and remaining energy after
backscattering, it can still overcome the MS and reach the detector and create
a misleading signal falsifying a possible sterile signature. The backscattering
probability is given by the backscattering coefficient. A gold-plated rear wall
has a backscattering coefficient of ≈ 50%, leading to a very sizeable imprint
on the spectrum and this being one of the dominant sytematics [15]. To reduce
this systematic, the possibility of a Beryllium RW (backscattering coefficient
of 3.4%) and modifications on the magnetic configuration are currently being
investigated [15].

• tritium decay on RW: as not every single tritium molecule can be pumped
away, there is a non-negligible accumulation of tritium on the rear wall. These
molecules are probable to be bound in hydrocarbons [86], which affects their
final state distribution. Cleaning the rear wall will mitigate this effect, but can
not be performed in short time intervals.

Source

The main systematic effects in WGTS stem from β-electrons scattering on other
particles or molecules.

• T2 scattering: the β-electrons starting location in the WGTS mainly follows
the tritium gas density distribution (see figure 3.4). Thus, they still have to
travel through a certain portion of tritium gas before most of it is pumped
away, with multiple scattering processes possibly taking place. The electrons
can partake in elastic scattering, molecular excitation and electron impact ion-
ization, all making them loose energy and altering their pitch angle and thus
falsifying the resulting spectrum.

• Magnetic traps: dips in the magnetic field can trap electrons with sufficiently
large pitch angles, leading to an increased number of scatterings and thus
distorting the energy spectrum [15, 82].
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Transport and Spectrometer

During their propagation through the beamline, electrons move through varying
magnetic field strengths, undergoing cyclotron motion as described in section 3.2.4.

• Magnetic Mirrors: the magnetic mirror effect can reflect or trap electrons de-
pending on their pitch angle, leading to a higher scattering probability for the
trapped electron [15].

• Synchrotron energy loss: electrons moving in magnetic fields emit energy in
form of synchrotron radiation. For electrons only travelling once through the
beamline, this energy loss is negligible compared to the energy resolution of
the detector [82]. However, many electrons undergo scatterings and reflections,
making them pass multiple times through the beamline.

• Transmission function: the transmission function describes the probability of
an electron with certain energy and pitch angle being transmitted through
the MS, given a certain retarding potential. In the differential mode, this can be
very well approximated by a step function with a cut at the retarding potential
energy, as the 2.7 eV width of the transmission edge [7] is negligible compared
to the energy resolution of the detector of 300 eV [80]. Thus, small instabilities
in the retarding potential are negligible for a differential measurement.

• Non-adiabaticity: the high kinetic energies of some electrons allows them to
move through the MS without exactly following the magnetic field lines, leading
to a possible unwanted loss of transmission [87].

Detector and Readout

Further distortions to the spectrum are introduced by the detector and signal readout
systematics, which need to be described in detail for a differential measurement.
For a more detailed account of these systematics, the following works should be
considered [81, 88–90].

• Backscattering and back-reflection: electrons can backscatter at the detector
after only depositing a fraction of their total energy. This effect is illustrated in
figure 3.10. Depending on their pitch angle, the backscattered electrons can be
reflected back onto the same or even a different pixel by the magnetic mirror
effect, possibly being counted as a separate event.

• Dead Layer: electrons can deposit part of their energy in a non-sensitive volume
at the entrance window of the detector, called dead layer. The effect of a dead
layer is illustrated in figures 3.10 and 5.6.
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Sensitive layerDead layer

Figure 3.10: Illustration of the interaction of β-electrons with the detector volume.
The fully sensitive detector volume is shown in blue, whereas the completely insen-
sitive volume called dead layer is shown in grey. The energy loss in the dead layer
region is illustrated by the yellow part of the electron trail. Figure adapted from
[91].

• Charge sharing: an incident electron can deposit its energy in multiple adjacent
pixels, possibly being counted as separate events. The impact of charge sharing
on the spectrum is shown in figure 5.10.

• Fano noise: the creation of electron-hole pairs in the depletion zone of the SDD
is a statistical process and thus subject to random fluctuations between events.
This is called Fano noise [92], and leads to an intrinsic limit to the energy
resolution of SDDs.

• Pileup: Two or more consecutive incident electrons on a short timescale are
registered as one event with the sum of their respective energies being assigned
to it. This is the main reason the count rate per pixel is limited to 105 CPS.

The full detector response for a monoenergetic electron beam is illustrated in
figure 3.11.

Modelling with TRModel

The TRModel was developed to make a prediction of the expected measured spec-
trum by holistically combining all relevant systematic effects. Its primary goal is to
provide a sensitivity estimation and to perform hardware optimization tests for the
TRISTAN project [15, 93]. It models most of the significant experimental effects
mentioned above. This is done by convolving the differential tritium β-decay spec-
trum with experimental response functions, each modelling an experimental effect.
The response function gives the probability of measuring a β-electron energy Ê,
when the actual energy was E (when integrating over the different electron pitch
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Figure 3.11: Response of the TRISTAN Detector to a monoenergetic electron beam.
The primary peak of the 10 keV electron beam is slightly shifted to lower energies
due to incomplete charge collection near the entrance window, which also causes a
low-energy transition layer shoulder. Photon emission following electron ionization
can result in a silicon escape peak, while backscattered electrons exiting the detector
produce a backscattering tail. The detection threshold marks the point where noise
and physical events become indistinguishable, and pileup effects distort the spectrum,
contributing to counts above the actual electron energy. Figure adapted from [89].

angles). In an ideal experiment, the response function would be a delta function
with the measured energy equaling the actual energy.

In the actual experiment, the tritium β-decay spectrum is not a continuous distri-
bution, but a histogram. Therefore, the discretized version of the response function,
a response matrix, has to be used. The energy histogram measured by the ex-
periment

#»

S exp can then be calculated using matrix multiplication of the response
matrix R with the binned original differential decay spectrum

#»

S theo [15]:

#»

S exp(Ê) = R(Ê, E; #»p )× #»

S theo(E;m4, sin
2(θ)). (3.9)

The response matrix depends on a set of nuisance parameters #»p and is an m × n
matrix. The binned theoretical spectrum

#»

S theo is an n-dimensional vector contain-
ing the number of events in each bin, and also depends on the sterile signature,
which is dictated by the sterile neutrino mass m4 and active-to-sterile mixing am-
plitude sin2(θ). The binned measured spectrum is an m-dimensional vector corre-
sponding to the measured histogram, where the bin width and number of bins m do
not have to match those of the binned theoretical spectrum.

The complete response matrix describing the entire experiment can be factorized
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into response matrices describing the N individual experimental effects [15]:

R(Ê, E; #»p ) = RN (ÊN , ÊN−1;
#»pN )×RN−1(ÊN−1, ÊN−2;

#»pN−1)×· · ·×R1(Ê1, E; #»p 1).
(3.10)

The individual response matrices Ri may depend on their own set of nuisance param-
eters #»pi which are all concatenated into #»p . They are numerically calculated using
analytical descriptions or Monte Carlo (MC) simulations, depending on the experi-
mental effect they model. Magnetic adiabatic collimation and the magnetic mirror
responses for example can be calculated analytically, but increasingly more complex
effects like detector backscattering have to rely on simulations.

Challenges

With the TRISTAN detector upgrade, signal amplitude down to the parts per
million scale (sin2(θ) ∼ 10−6) can be probed. Nonetheless, systematic effects act
on the spectrum at the percent level, making the impact of the systematic effects
significantly larger than the sterile neutrino signature. The sterile neutrino signature
is a very characteristic step-like distortion, but it is a shape-only effect, requiring
very accurate modelling and a robust uncertainty and correlation estimation for the
considerably larger systematic effects.

Many response matrices are created with MC simulations, which are a type of
simulation that uses random sampling to numerically approximate the prediction of
an observable [94]. Consequently, they are prone to statistical fluctuations and thus
contain statistical uncertainty. To alleviate these, numerous random samples have
to be used, a rule of thumb being to have at least 10 to 100 times the actual number
of samples. This becomes a problem when using the model for a deep spectrum mea-
surement like in TRISTAN, with an expected statistic of O(1015) β-electrons [83].
Here, the computing times for the simulations become infeasible, while the accuracy
of the simulation is hard to evaluate and corrections, like from calibration measure-
ments, are difficult to apply [15]. A rough time estimate from [15] states that it
would take over 300 years to complete the simulation of the MC dataset with equal
statistics as a one-year measurement.

Another challenge is posed by the bin widths of the response matrices. More
coarse binning leads to less accurate responses, while finer binning increases the
memory consumption of the matrix, as well as the computation time required for
the convolution. This considerably limits how small the bin widths can be.

In the light of these limitations, performing a fit of the sterile neutrino parameters
on measured data using the TRModel is currently not feasible. Thus, other analysis
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channels have to be pursued, that do not directly depend on a parametric fit with
TRModel. One Idea is to use the ability of NN to discriminate complex patterns in
data to detect the sterile neutrino signature. In this work, the search for the sterile
neutrino signature using NN will be outlined, and the first sensitivity studies will be
discussed.
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Chapter 4

Neural Networks

The challenges of using TRModel outlined in section (3.4) make testing other analy-
sis channels worthwhile. Neural Networks (NNs), a type of Machine Learning (ML)
model, are a candidate for a direct search of the spectral distortion a sterile neutrino
would add to the kinetic energy spectrum of tritium β-electrons in TRISTAN data.
They have been used widely in particle physics due to their ability to discriminate
complex patterns in data [8, 9]. In this thesis, multiple NN are trained on simulated
data modified with different systematic effects. Their goal is to classify the samples
into those that contain a sterile neutrino signature and those that do not. This is
called Binary Classification (BC) and is different from directly inferring the sterile
neutrino mass and active-to-sterile mixing angle of the sterile neutrino signature
that a sample contains. The NNs are therefore agnostic on the specific values of
these sterile parameters. However, their sensitivity to a sterile neutrino signature
as a whole can be judged using the method outlined in section 4.3. Thus, training
with BC as a target serves as a good first step when assessing the usefulness of NN
for detecting a sterile neutrino signature in TRISTAN. In addition, the robustness
of the NNs when dealing with systematic uncertainties and model inaccuracies is
tested in chapter 5.

This chapter begins by introducing the fundamental principles behind doing ML
with NNs and seeks to demystify the topic by providing a clear mathematical founda-
tion rooted in statistical principles (section 4.1). It then moves on to explain how BC
works and what the learning algorithm of the NN looks like (section 4.2). Next, it
introduces the different NN architectures that are compared against each other in
this thesis (section 4.2.1). Afterwards different techniques to optimize the training of
the NNs are discussed (section 4.2.2). The chapter then continues with the data the
models are trained on, as well as the relevant preprocessing steps (section 4.2.3). Fi-
nally, the analysis strategy is outlined, where the traditional approach is contrasted
with the NN approach used in this thesis (4.3).
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4.1 Fundamental Principles

To understand why NN work and how they could be a strong candidate for detect-
ing a sterile neutrino signature in TRISTAN data, it is necessary to introduce the
mathematical backbone of NN. In the usual statistical setting, a closed-form mathe-
matical model is used to describe the data. Here, real-world data x is interpreted as
a realization of an underlying concept z. An example would be the concept of a non-
zero neutrino mass, which is manifested in the measured integral tritium β-decay
spectrum with a shifted kinematic endpoint. The connection between the concept
and its realization is captured in the conditional probability distribution p(x|z).

In this framework, the observed data for a specific latent concept (x, z) emerges
from both the distribution of concept values, p(z), and their specific realizations,
p (x|z):

(x, z) ∼ p (x, z) = p (x|z) p(z).
Bayes’ theorem then provides a foundation for inferring the latent concept z given
observed data x, allowing us to compute the target distribution p(z|x) (also called
posterior):

p (z|x) = p (x|z) · p(z)
p(x)

. (4.1)

Various statistical techniques, such as Markov Chain Monte Carlo or parametric fit-
ting, can aid in this inference. However, in many cases, a robust mathematical model
is either incomplete or unavailable, leaving only observed data samples x, presumed
to originate from the joint distribution x ∼ p(x, z), accessible for analysis. An ex-
ample of this would be the search for a sterile neutrino signature in TRISTAN data,
where the modelling of p(data |m4, sin

2(θ)) is difficult or computationally not feasi-
ble. The approach now uses a setup that requires only sample inputs. This is made
possible by framing the statistical inference task, which is to approximate p(z|x), as
a learning problem. Learning here is defined as a search through a predefined space
of different hypotheses, which could contain a good approximation of the solution.
The specific form of this hypothesis space is determined by the NN architecture. The
search is guided by a performance function that depends on the data.

4.2 Binary Classification with Neural Networks

To produce a useful NN, a model architecture has to be chosen, as well as a perfor-
mance objective that leads to the desired outcome and a learning algorithm that does
the footwork of iteratively updating the network. In the context of TRISTAN, the
goal is to approximate the posterior distribution p(ms, sin

2(θ) | binned β-spectrum)
by a NN (denoted by q #»

θ (z|x), the notation will be explained shortly). In this the-
sis, a simpler first step is discussed. Here, the goal is only to discuss the general
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Figure 4.1: The Bernoulli Distribution B(z|p) used for BC. A NN learns to assign
a probability p for a given data sample to have the label 1. In the case of this thesis,
the label 0 belongs to spectra that do not contain a sterile neutrino signature, while
the label 1 belongs to spectra that do contain one.

sensitivity of NN to a sterile neutrino signature. This is achieved using Binary Clas-
sification (BC). BC means that β-decay spectra (samples x) are given a label z,
where

z =

{
1, if the sample x contains a sterile neutrino signature
0, otherwise.

(4.2)

The goal of the NN is to assign the correct label to its input.

Search Space

The posterior distribution p(z|x) is approximated by a parametrized variational fam-
ily of densities. In simpler words, the approximation is chosen from a set of probabil-
ity distributions (the variational family) defined by adjustable parameters (the NN).
As mentioned above the task at hand is BC, because the NN is trained to distinguish
two classes of input data. Thus, for BC purposes the Bernoulli Distribution B(z|p)
is used. Here, z denotes the class label, where z ∈ {0, 1}, and p the probability of
obtaining the outcome with label 1. It is depicted in figure 4.1

The probability p is then taken to be a function of the data x depending on
learnable parameters θ, resulting in p = pθ(x). This is the NN. It maps the N
dimensional input space RN to [0, 1] ∈ R. In general, it can be seen as a composition
of different functions, how many and which kind of functions is dictated by the model
architecture.
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Performance Objective

The performance objective is to approximate the posterior by the density
parametrized using the NN. This is equivalent to minimizing the distance be-
tween the posterior and the density parametrized by the NN. A distance measure
commonly used in ML is the forward Kullback-Leibler Divergence (KL Diver-
gence) [95]:

DKL(p||q) =
∫

dx p(x) log
p(x)

q(x)
. (4.3)

It measures the discrepancy of the two distributions p and q when looking through
the lens of one of them. In practice, defining qθ(z|x) := B(z|pθ(x)), the performance
functional, also called Loss functional L(θ), is given by

L(θ) = DKL(p(z|x)||qθ(z|x))

= −
∫

dx p(z|x) log qθ(z|x).
(4.4)

In the second line of equation 4.4, it was used that the p(z|x) log p(z|x) term of
the KL Divergence does not matter for the minimization as it is simply a constant.
Unfortunately, the integral over DKL is not computable. To solve this, one can try to
approximate it empirically by sampling z ∼ p(z|x) and summing over the resulting
terms. However, p(z|x) is precisely what we try to approximate and do not know,
so sampling from this distribution is not possible. To fix this, instead of finding a
good approximation of the posterior qθ(z|x) for a single datum x, the problem is
solved for all data at once by calculating the expected value of L(θ) with respect
to x (i.e. taking the integral over p(x) with respect to x). Doing this avoids having
to sample z ∼ p(z|x) to approximate DKL, and instead sample from (x, z) ∼ p(x, z).
This is called amortized variational inference and results in the loss function

ExLθ(x, z) = −
∫

p(x, z) log qθ(z|x)

≈ − 1

N

∑

(x,z)∼p(x,z)

log qθ(z|x) = L̂.
(4.5)

Here, the integral over p(x, z) is approximated by the sum over labeled sam-
ples (x, z) ∼ p(x, z). The resulting L̂ is called (empirical) Cross Entropy Loss
and provides a simple performance measure for training inference tasks on labeled
data (x, z).

Learning Algorithm

To learn the optimal parameters
#»

θ that minimize L̂, Stochastic Gradient Descent
(SGD) is used. The gradient of L̂ at the current position with respect to the learnable
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parameters
#»

θ is calculated and used in an update step to iteratively approach a
minimum of L̂. The update step is given by

#»

θ n+1 =
#»

θ n − λ · ∇θL̂ (4.6)

In this work, a high-performance variation of SGD called Adam is used [96]. As
apparent from equation 4.6, to compute an update step the gradient of the scalar
loss function L̂ with respect to the networks parameters

#»

θ is needed. To compute
this efficiently, a technique called backpropagation is used. For an overview on the
history of backpropagation and a visual explanation of how it works, refer to [97,
98].

4.2.1 Model Architectures

The model architecture gives the hypothesis space its form. It defines the complexity
and number of parameters of the model. All the following architectures will be
compared against each other in different scenarios regarding their sensitivity to a
sterile neutrino signature in chapter 5. The goal is to infer which architecture is the
most sensitive to a sterile neutrino and how complexity affects performance. The
architectures and their explanations are loosely based on [99].

Multilayer Perceptron

This architecture serves as a benchmark as it is the most straightforward. Nonethe-
less, the Multilayer Perceptron (MLP) already proves to be very powerful, as can be
seen in chapter 5.

The MLP is composed of L layers: f = f (L) ◦ · · · ◦ f (1). The layers with l < L are
called hidden layers. The l-th layer defines a function that maps a dl−1-dimensional
input vector called features to a dl-dimensional output f (l) : Rdl−1 → Rdl . A layer
takes on the form

#»

f (l)( #»u ) = a(l)
(
W (l) #»u +

#»

b (l)
)

(4.7)

where the a denotes a non-linear function, also called activation, which is applied
element-wise. The matrix W (l) ∈ Rdl×dl−1 is called weight matrix and

#»

b (l) ∈ Rl is
called bias vector. The parameters of the network are then compromised of the full
collection of weight matrices and biases:

#»

θ =
(
W (1), . . . ,W (L),

#»

b (1), . . . ,
#»

b (L)
)

. (4.8)

Even with a single hidden layer (L = 2), an MLP is a universal function approxima-
tor [100].

The activation functions are the secret to the expressiveness of NNs. Simply
stacking multiple linear layers without activations would effectively result in just

49



Chapter 4 Neural Networks

Input Layer Hidden Layers Output Layer

In
pu

t d
at

a 
 𝒙

Figure 4.2: Illustration of a Multilayer Perceptron (MLP). The circles denote the
individual neurons, with the blue lines denoting the weight that is connecting every
pair. An array x, for example a binned β-spectrum, is fed to the input layer. The
dimensionality of the input layer, here meaning the number of neurons it contains,
has to match the dimension of the input array x. This input is then propagated
through the hidden layers of the network to the output layer. In the case of binary
classification the output is only one-dimensional, as illustrated with the single neuron
above.

another linear layer, as linear combinations of linear combinations are still just linear.
The popular choice of activation function for a deep NN is the Rectified Linear Unit
(ReLU):

aReLU(u) =

{
x, if u > 0

0, otherwise
(4.9)

In the case of binary classification, the final activation a(L) should be a sigmoid.
This is to map the output to be in the interval [0, 1], the standard case for BC. The
full MLP model architecture is schematically shown in figure 4.2.
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Figure 4.3: Illustration of a one dimensional convolution used in a CNN. The purple
boxes depict a kernel of size three with the respective learned filter weights sliding
over the input.

Convolutional Neural Network (CNN)

The MLP in general does not assume any spatial relationships between two entries
in the input array. Spatial here refers to the space of kinetic energies of the β-
electrons. To change this, a subclass of MLPs, the Convolutional Neural Networks
(CNNs) is introduced [99]. They are most commonly used for image and time series
classification [101]. A CNN consists of multiple filters (also called kernels) that are
convolved with the input signal. The parameters of these kernels are learned by
the network. The convolution involves striding over the input array and calculating
the inner product at each step, as can be seen in figure 4.3. In this sense, a CNN
can be understood as a fully connected MLP with shared weights. The convolution
process is characterized by the kernel size, which dictates how many weights the NN
can learn in each kernel, as well as the stride, and padding, which control at which
positions in the array the inner product is calculated and whether to expand the
input array by a fixed amount of entries when the kernel would extend beyond the
last entry. The one dimensional convolution process is visualized in figure 4.3.

In practice, a CNN includes multiple filters, resulting in a multivariate represen-
tation of the signal with dimension equal to the number of filters used. The goal
is to learn multiple discriminative features useful for the classification task. These
discriminative features are learned by following up the convolutional layers with a
classifier (e.g. an MLP), with a global pooling layer in between the two. The pooling
layer aggregates the entire array of the preceding layer in each dimension into a single
real value by either choosing the maximum or calculating the average value of the
entries in the array. The entire architecture can be seen in figure 4.4. To summarize,
the convolutional layers serve to construct a more descriptive representation of the
input which can subsequently be classified as usual by an MLP.
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Figure 4.4: Illustration of a convolutional neural network (CNN) with three convo-
lutional layers. After the final convolutional layer the signal is pooled in each channel
dimension. For a classification task, the global pooling layer is followed by a fully
connected MLP.

Residual Neural Networks

Finally, to see if deeper architectures (i.e. architectures that stack more layers on
top of each other) are more performant, Residual Neural Networks (ResNets) are
introduced as an architecture.

Deeper NN architectures can handle more complex tasks but suffer from vanishing
gradients, as the gradient propagation becomes more and more complicated with in-
creasing depth. To control the gradient flow through the network on an architectural
level, residual or "skip" connections are utilized. The output of each block is added
element-wise to the original signal, leading the single blocks to effectively learn an
"update" on the input signal. These residual connections allow the gradient to flow
directly to each block, simplifying the updates to their weights. Residual connections
are most prominently applied to deep CNNs, but can also be used for other deep
models like MLPs, and are realized as shown in figure 4.5.

4.2.2 Supplementary Training Techniques

The following techniques are employed to ensure a smooth training process and im-
prove the NNs sensitivity to a sterile neutrino signature, as well as their generalization
capabilities.

As mentioned above, a common problem deep NNs face is that of exploding and
vanishing gradients. To prevent or alleviate this the input data x should be normal-
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Figure 4.5: Sketch of a residual neural network ResNet with nine total layers. After
each three-layer block the update computed by the block is added to the original
input, utilizing a so-called "skip" or "residual" connection. Depicted here are two
examples of blocks: a CNN and an MLP Block. The BN and Dropout boxes denote
additional layers that improve the generalization capabilities of the NN as outlined
in section 4.2.2.

ized to have a mean of zero and unit variance

x → x− Ex[x]

Var(x)
, (4.10)

where Ex[x] is the mean input datum. This does not affect the data distribution
but rather corresponds to a choice of units. Additionally, the weights w (and biases)
of the network have to be initialized in a certain manner to control the scale of the
gradients. In this thesis, this is achieved using Xavier normal initialization, in which
the variance of the gradients is kept in check for both a forward and a backward
pass through the NN by sampling w from a normal distribution with zero mean and
standard deviation based on the number of input and output features (Nin, Nout):

wNN ∼ N (µ = 0, σ2 =
2

Nin +Nout
). (4.11)

Another recurring problem for neural networks is that they overfit the data they are
trained on. This means that the model simply memorizes the input data instead of
the latent concept. To diagnose this issue, the dataset is split into a training and a
validation part. The validation data is not used to update the models weights during
training, but to evaluate its performance on previously unseen data. If the models’
performance differs largely between the two datasets, it is a strong indicator that
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it is overfitting. To combat this, regularization techniques that force the model to
learn the general latent concept instead of the data itself can be used. The following
techniques are leveraged in this thesis:

• Batch Normalization Layers normalize the input of each layer by scaling
and shifting it based on the mean and variance of a mini-batch of the training
data. This prevents the mean and covariance of the data representations in
hidden layers to evolve during training which could pose challenges for the
downstream layers. Thus, adding batch normalization layers helps accelerate
and regularize training. For more detailed information refer to [102].

• Dropout Layers randomly zero some elements of the input with a certain
probability. They drop neurons only during training of the model and allevi-
ate overfitting by preventing complex co-adaptations of neurons, forcing each
neuron to learn to detect a generally helpful feature [103].

• Weight Decay adds the L2 norm (meaning the square root of the squared
sum) of all the weights to the loss function, which will make each iteration of
the NN try to minimize the model weights in addition to the loss. Doing this
will keep the weights as small as possible preventing overfitting and exploding
gradients.

Parametrizing the Model

It is possible to add additional inputs to the NN to give the model more context. An
encoding of the values of the parameters of interest, the sterile neutrino mass m4 and
active-to-sterile mixing angle sin2(θ), can be appended to the binned differential β-
spectrum and passed to the model. The values correspond to the actual sterile
neutrino signature in the spectrum. The same is also done, however, to spectra
that do not contain a sterile signature. This technique is called "parametrizing" the
model:

NN(binned spectrum) → NNp(binned spectrum, m4, sin
2(θ)) (4.12)

Parametrizing a NN allows it to adapt to specific locations in the sterile parameter
space, effectively training a distinct model for each location. This leads to an increase
in the NNs sensitivity to the sterile neutrino signature, as illustrated in figure 5.1.

Hyperparameter Optimization

The hyperparameters of a ML model are configuration settings that are set before
the training itself and are not learned directly from the data. They define the archi-
tecture and training dynamics of a model, influencing its performance and ability
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to generalize. The architectural hyperparameters include for example the number
of hidden layers, the number of neurons for each hidden layer, and the use of batch
norm and dropout layers. Hyperparameters that affect the training dynamics of
the model include the learning rate, which controls the step size of weight updates,
the batch size, which defines the number of training samples processed before the
model updates its weights, the training epochs, which specify how many times the
entire dataset is passed through the model, and the weight decay parameter, which
controls the weight of the L2 norm in the loss function.

A large part of the work for this thesis was invested into hyperparameter opti-
mization. Initially, a grid search through the space of hyperparameters was used.
The hyperparameters were split into architectural parameters and training dynamic
parameters. First an initial guess for the architectural parameters was used to scan
through the grid of the training dynamic parameters, in the order: learning rate →
batch size → weight decay parameter. Then the training dynamic parameters were
fixed, and the grid scan was done for the architectural parameters in the order:
number of hidden layers → number of neurons → dropout probability. This cycle
was repeated iteratively until the sensitivity to the sterile neutrino signature using
the NN did not improve any further.

However, through further research and discussion, this method turned out to be
very ineffective, with a grid scan proven to perform worse than even a random
search [104]. Thus, Bayesian hyperparameter optimization with a hyperband strat-
egy was chosen due to its robustness and efficiency compared to other hyperparameter
optimization strategies [105]. Bayesian optimization uses probabilistic models, such
as a Tree-structured Parzen Estimator, to intelligently search the hyperparameter
space by balancing exploration and exploitation. Hyperband complements this by
allocating computational resources dynamically, evaluating configurations with in-
creasing fidelity (here training iterations) and discarding underperforming candidates
early. In conclusion, the Bayesian optimization proposes promising configurations
(based on a few initial random configurations), while hyperband efficiently manages
resource allocation [105, 106].

4.2.3 Training and Evaluation Data

The backbone of each ML model is the data used to train it. To ensure optimal
sensitivity of the NN to the sterile signature, the size and contents of the dataset
were carefully chosen. The entire training dataset is split into multiple parts to
cross-check the NN performance and generalization capabilities. Thus, the training
dataset refers to the dataset used for training and the dataset used for validation of
the NN combined. As an abbreviation, the evaluation dataset refers to the dataset
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that is used for drawing the sensitivity contour as explained in section 4.3.1, and
should not be confused with the validation dataset.

For the training process, an 80/20 split of training data and validation data was
chosen. The full training dataset used in this thesis contains 1.2 × 106 samples x,
each with a label z. The samples x consist of differential tritium β-decay spectra,
divided into energy bins with a bin width of 100 eV and stored in arrays with Ni

entries each. The binned β-spectra are generated from the theoretical prediction
discussed in section 3.1. To save computational resources and time, the probability
density function of the β-electrons from tritium β-decay is evaluated at the cen-
ter of the energy bin instead of integrating over the whole bin width. However,
bin-integration will be added in the future. This does not impact the predictive
power of the NN. Half of the spectra in each dataset contain no sterile signature
(i.e. z = 0 ↔ ms = 0, sin2(θ) = 0), these are called reference spectra. The other half
contains sterile neutrino signatures that vary from spectrum to spectrum, these spec-
tra are called sterile spectra. The sterile parameters for the individual sterile spectra
in the training dataset are drawn as follows:

ms ∼ Uniform(0 keV, 18.6 keV)

sin2(θ) ∼ Log(10−1, 10−3).
(4.13)

Multiple testings have shown that it is sufficient and even boosts performance to
only introduce samples with active-to-sterile mixing angles down to sin2(θ) = 10−3.
Each spectrum should emulate a histogram for a TRISTAN measurement period
of one year, amounting to the collection of 2 × 1015 electrons. Therefore, bin-wise
Poisson noise corresponding to an overall normalization of 2× 1015 counts is added
to each spectrum, as shown in figure 4.6.

The dataset used for training is processed multiple times by the NN during the
training process. An epoch is one complete pass through the entire dataset, while
a batch is a subset of data processed in a single iteration. The networks weights
are updated after each batch. Batches enable efficient training by updating model
weights multiple times per epoch, balancing computational cost and convergence
stability.

Preprocessing

After the generation process, each sample is passed through a preprocessing chain,
where different modifications can be applied, depending on which study the model
is used for:

• The samples can optionally be convolved with (different) response matrices
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Figure 4.6: Examples of a MC β-spectrum (shown in green) and the underlying
theoretical truth (shown in blue) for different active-to-sterile mixing angles. Below,
the relative difference between the truth with- and without a sterile neutrino signa-
ture is shown, in addition to the MC realization. The MC contains a total of 2×1015

electrons, corresponding to one year of data taking.

to incorporate systematic effects and study the effect of systematic uncertain-
ties.

• A shape factor can be added to the samples to mimic a general shape distor-
tion.

• Additionally, more general perturbations that mimic modelling inaccuracies
can also be added to the samples.

A combination of the above is also possible. Finally, the array entries in each sample
are shifted to have a mean of zero and a variance of one. This final preprocessing
step is the same for every sample regardless of its former modifications. An example
of the preprocessing chain can be seen in figure 4.7.

4.3 Analysis Strategy for Sensitivity Studies

The sterile neutrino sensitivity refers to the experiment’s capability to exclude the
existence of a sterile neutrino signature of a given magnitude in the measured spec-
trum. The goal of this thesis is to infer if a NN-based ML approach is sensitive to
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Figure 4.7: Exemplary preprocessing chain. The MC data sample (stemming from
the theoretical prediction with bin-wise Poisson noise) is convolved with the PAE
response and the detector dead layer response. Before passing the resulting sample
to the NN, the mean of the data sample is shifted to zero and its variance is scaled
to one. This step is often called feature standardization.

the sterile neutrino signature and robust under systematic uncertainties and unex-
pected distortions. In the future, sterile parameter regression using this approach
is planned, but for now only binary classification is used. The latter is equal to a
hypothesis test which is agnostic to the actual values of the sterile mixing angle and
mass. In this regard the NN-based approach presented in this thesis is different from
a parametric fit, which would also try to infer the parameters governing the sterile
neutrino signature. The following two sections will explain how sensitivity contours
with respect to the sterile parameters are drawn in the case of a parametric fit and
the NN- and BC-based approach, as well as a quick explanation of the underlying
package developed for this thesis.

Maximum Likelihood Analysis

The method of maximum likelihood is a technique that is used to estimate parameter
values from a given set of n measurements of a random variable x, which is assumed
to follow a known probability density function (p.d.f.) f(x,

#»

θ ). The p.d.f. f(x,
#»

θ ) can
depend on multiple parameters

#»

θ = (θ1, . . . , θm) of which at least one is unknown.
The likelihood function

L( #»

θ ) =

n∏

i=1

f(xi,
#»

θ ) (4.14)

is maximized by the parameters
#»

θ fit that best describe the measured data [94].
Because working with a sum is more numerically stable than working with a product,
and modern optimization algorithms are designed for minimization, the negative
logarithm of L(

#»

θ ) is used as a minimization target [107]. This scenario is commonly
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used and referred to as "neg-log-likelihood minimization". If f(x,
#»

θ ) is a normal
distribution, the minimization of − log(L) is equivalent to a χ2 minimization [94],
because here

−2 · log(L) = χ2 (4.15)

For the KATRIN experiment after the TRISTAN detector upgrade, the random
variables xi are the number of counts Ni measured within a given energy range of
the differential tritium β-electron energy spectrum dΓ

dE , called an energy bin i. The
model prediction µi for an energy bin i is then given by the integral of dΓ

dE over
the corresponding energy range i, and depends on the sterile neutrino parameters of
interest (m4, sin

2(θ)):

µi = A ·
∫

i

dΓ

dE
(m4, sin

2(θ)) dE (4.16)

Here, A denotes an overall normalization factor which is handled as a nuisance pa-
rameter in the fit. The differential decay spectrum in theory also depends on the
neutrino mass mν . The inference of mν is not the goal of the TRISTAN detector
upgrade, and thus mν is set to zero for all the following analyses.

The probability to measure Ni counts for an energy bin i given a model predic-
tion µi is then given by the Poisson distribution:

f(Ni, µi) =
µNi
i exp(−µi)

Ni!
(4.17)

As N is very large in each energy bin for a measurement time of one year with the
TRISTAN detector upgrade (Ni ≥ O(108)∀i), the Poisson distribution approaches a
normal distribution in each energy bin [94]. This allows the use of χ2 minimization
as described in equation 4.15.

Sensitivity Gridscan

To evaluate the sensitivity of the KATRIN experiment with the TRISTAN de-
tector upgrade to keV-scale sterile neutrinos, a grid scan is performed over the
two-dimensional parameter space spanned by the active-to-sterile mixing ampli-
tude sin2(θ) = |Ue4|2 and the sterile neutrino mass m4 of size k × l. The index k
corresponds to the logarithmically spaced values for sin2(θ) and the index l for the
linearly space values for m4. The goal is to use the ∆χ2 test statistic to draw a
sensitivity contour at a certain CL. The test statistic measures the compatibility
between data and a model prediction, which depends on a hypothesis. An example
for a hypothesis is the existence of a sterile neutrino with a specific mass m4 and
active-to-sterile mixing angle sin2(θ). The "no-sterile" hypothesis with sin2(θ) = 0
is used as a null hypothesis.
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At each grid point a χ2 minimization is performed. Here, the sterile neutrino
mass m4 and mixing angle sin2(θ) are kept fixed at a value corresponding to the grid
point, resulting in a minimal χ2 value χ2

kl. Additionally, at each grid point the χ2-
value for the null hypothesis χ2

kl(sin
2(θ) = 0) is calculated. The best fit value out of

all the χ2
kl is then determined by χ2

BF = min
kl

χ2
kl. The difference ∆χ2

kl = χ2
kl − χ2

BF

is used to draw the sensitivity contour when ∆χ2
kl = ∆χ2

crit = 5.99 at 95% CL
for two degrees of freedom [94]. The validity of this approach relies on whether
Wilks’ theorem holds across the entire sterile parameter space, which is assumed to
be valid for the purposes of this thesis. For the TRISTAN detector upgrade, the
expected statistical error on the counts in each energy bin of the spectrum is small.
Consequentially, the distribution of counts in each energy bin can be assumed to
be normally distributed. In that case, the ∆χ2 test is equal to the likelihood-ratio
test, which is the most powerful hypothesis test according to the Neyman-Pearson
Lemma [108, 109].

The χ2
kl can be modified to include not only the statistical uncertainties of the bin

contents but also systematic uncertainties and correlations between the energy bins.
This is done using covariance matrices V [15]:

χ2
kl(

#»p ) =
(

#»

Γkl(
#»p )− #»

Γ ref

)T
V −1

(
#»

Γkl(
#»p )− #»

Γ ref

)
. (4.18)

Here, the vector
#»

Γkl denotes the binned differential tritium spectrum with the de-
tected rate in each energy bin for a sterile neutrino signature corresponding to the
grid point kl, depending on a set of systematic parameters #»p . The model evaluated
under the null hypothesis (sin2(θ) = 0) and a fixed set of systematic parameters
is denoted by Γref. The covariance matrix can be sub-divided into statistical and
systematic contributions:

V = Vstat + Vsyst. (4.19)

The statistical uncertainties in each bin scale with the measurement time. The sen-
sitivity contours constructed from a grid scan that result for different measurement
times when only taking the statistical uncertainties for each bin into account are
shown in figure 4.8.

4.3.1 Neural Network Method

The NN method also utilizes a grid scan. At each grid point kl a fixed number of
spectra NGP = 105 that contain a sterile neutrino signature with a sterile neutrino
mass m4 and mixing angle sin2(θ) corresponding to the grid point are generated.
They are each computed from the model prediction, with Poisson noise added to
each bin. Additionally, each spectrum can be further modified with an individual
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Figure 4.8: Statistical exclusion contours for different measurement times with the
TRISTAN detector upgrade. The contours were constructed using a grid scan over
the sterile parameter space. At each grid point, a ∆χ2 test is performed. At the grid
points where the value crosses the threshold value of ∆χ2

crit = 5.99 for two degrees of
freedom at 95% CL, the contour is drawn. The shorter the measurement time, the
fewer electrons are collected. Consequentially, the statistical sensitivity decreases.

response matrix to account for systematic uncertainties. For example, each of the
spectra can contain an individual response for different deadlayer widths, mimicking
the uncertainty in the actual value of the deadlayer. This is used to demonstrate
the NNs generalization capabilities beyond systematic uncertainties. These spectra
are passed through the model. The outputs of the model will be distributed because
no two spectra are alike due to the inherent Poisson noise in each energy bin of each
spectrum. The output is used to fill a histogram. The resulting histogram is called
"sterile histogram" Hs,kl.

Next, NGP additional spectra corresponding to the null hypothesis, i.e. containing
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no sterile neutrino signature (sin2(θ) = 0), are generated and again passed through
the model. The resulting outputs are used to create the "null histogram" H0,kl.
The expectation value of Hs,kl is used as test statistic s for each grid point. Based
on observations, the model outputs for each grid point kl are assumed to be nor-
mally distributed. Therefore, the test statistic s is equal to the mean of Hs,kl. As
threshold t, the 95th percentile of H0,kl is used. The sensitivity contour is drawn
when s = t. This corresponds to the case where the model is not able to distin-
guish between the expected spectrum containing a sterile neutrino signature and the
reference spectra with a 95% CL. The whole process is illustrated in figure 4.9.

4.3.2 Code Implementation

As ML framework, the PyTorch library with GPU accelerated training via the Apple
MPS or Nvidia CUDA backend was used [110–112]. The package facilitating the
data generation, model training and evaluation was developed specifically for this
thesis and can be found here [113]. For Hyperparameter Optimization, the package
SMAC3 was used [106]. It implements Bayesian Hyperparameter Optimization with
a Hyperband Strategy.

To ensure reproducibility, torch.manual_seed, torch.mps.manual_seed and
torch.cuda.manual_seed were fixed throughout the whole training and evaluation
process. For the MPS backend however, this was insufficient with some fluctuations
in training outcomes occurring. This needs to be investigated further in the future.

The data generation and preprocessing processes are parallelized, with optional
just-in-time (jit) compilation of the relevant theory functions using numba. However,
the overhead from the compilation itself proves to be too large to amortize with the
speed-up it provides. Generating 106 statistically fluctuated samples takes 36 s1. The
NN training averages at 1.85 epochs per second for a batch size of 25000. Currently,
the main bottlenecks of the code are the hyperparameter optimization process and
the generation of the sensitivity contours using the NN method. Drawing a sensitivity
contour using 1000 samples to generate the test statistic and threshold values at each
grid point, for a grid with 104 total grid points, takes around 10 minutes. Adding
modifications to the dataset increases the computation time by up to a factor of 1.5.

1Calculations performed on an Apple M3 Pro MacBook Pro with a 12-core CPU and 18-core GPU.
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Figure 4.9: Illustration of the grid scan process to construct sensitivity contours
for NNs. The left-hand plot shows a part of the sterile parameter space with two
exclusion lines. The green line corresponds to the χ2 exclusion line at 95% CL for
spectra only containing statistical uncertainty. The blue exclusion line is constructed
using the algorithm outlined in section 4.3.1. On the three plots on the right, the
exclusion line construction algorithm for the three highlighted grid points is shown
explicitly. At each of these points 105 statistically fluctuated spectra containing
the null hypothesis (sin2(θ) = 0) are passed through the model and the outputs
are used to fill a histogram (shown in black). Identically, 105 spectra containing a
sterile neutrino signature equivalent to the grid point are used to create the colored
histograms. As a test statistic, the mean of the model outputs for the sterile spectra
is used. The 95th percentile of the null hypothesis histograms is used as a threshold
for the test statistic. Test statistic and threshold get closer for smaller sin2(θ), until
they eventually cross. The blue exclusion line is drawn at the point of crossing. This
process is repeated for the entire sterile mass range, and with more grid points on
the mixing angle axis than shown in this plot.
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Chapter 5

Sensitivity Studies

This chapter investigates the sensitivity of the NNs of this work to sterile neu-
trino signatures that are accessible to the tritium spectrum measurement with the
KATRIN experiment when equipped with the TRISTAN detector. Furthermore, it
evaluates the robustness of the NNs under systematic uncertainties and its general-
ization capabilities for model inaccuracies.

The sensitivity of the NN quantifies its ability to exclude sterile neutrinos with
specific masses m4 and active-to-sterile mixing angles sin2(θ) based on the measured
energy spectrum. The primary goal of this thesis is to illustrate the sensitivity of dif-
ferent NN architectures to the sterile signature in spectra containing statistical and
systematic uncertainties. This is achieved using Binary Classification (BC), which
means that the parameters of interest (m4 and sin2(θ)) are not inferred directly, in
stark contrast to, for example, a parametric fit. First, the chapter covers the sensitiv-
ity to the sterile neutrino signature when only accounting for statistical uncertainty
(section 5.1). The most performant NN is then used for further studies regarding the
impact of detector related effects and the uncertainties involved in the parameters
associated to their modelling. To model generic uncertainties, different shape factors
with known parametrization are applied to the spectra and the robustness of the NNs
even under nonphysical distortions is tested. Finally, the robustness of the NN under
arbitrary unknown perturbations and unknown shape factors is investigated.

5.1 Model Performance with Statistical Uncertainties

As a baseline for performance evaluation, all the NNs were trained to classify statis-
tically fluctuated spectra. The performance of a NN here is given by how close the
sensitivity contour is to the statistical limit for each sterile neutrino mass m4. The
goal of this section is to demonstrate that NNs are very close to being as sensitive
to the sterile neutrino signature as a ∆χ2 test. Their sensitivity is evaluated using
a grid scan over the sterile parameter space. The results of this study are depicted
in figure 5.1, and the hyperparameters used for their training can be found in the
appendix A.
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Figure 5.1: Statistical sensitivity contours for different NN architectures across the
sterile parameter space at 95% CL. The contours have been constructed using a
grid scan and subsequent interpolation between grid points. They are each prone to
statistical fluctuations. The CNN-based architectures reach the best sensitivity for
sterile masses m4 ∈ [1, 13], while the MLP-based architectures dominate for large
sterile masses.

The performance agrees well with the statistical limit set by the ∆χ2 test, but
none of the NN achieve the same level across the entire accessible sterile neutrino
mass range. The closer the sensitivity contour when evaluated with a NN is to the
statistical limit, the more sensitive the method is to the sterile neutrino signature.
The most performant models for sterile masses in the range of m4 ∈ [2, 14] keV are
the shallow CNN and the deep CNN using residual connections (ResNet- CNN).
For larger sterile masses m4 > 14 keV, the MLP and Parametrized Multilayer
Perceptron (PMLP) exhibit higher sensitivity. The deep MLP employing residual
connections (ResNet- MLP) performs approximately half an order of magnitude
worse than its shallower counterparts, potentially due to suboptimal hyperparame-

66



5.1 Model Performance with Statistical Uncertainties

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Energy [keV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

ea
n 

S
al

ie
nc

y 
pe

r 1
00

 e
V

 b
in

×10
2

Mean Saliency
-spectrum

Figure 5.2: The saliency map averaged over all input spectra (purple), superimposed
with the mean input spectrum (orange). The saliency map highlights the most
important regions in an input that contribute to the NNs prediction. The higher the
saliency value for an energy bin, the larger the influence of that area on the decision.

ter optimization, which has to be further investigated. Furthermore, all the models
performances lack in the lower sterile range when compared to the statistical exclu-
sion line.

A possible explanation for this phenomenon can be found by looking at the regions
which influence the NNs output the most. The input regions most influential in
the network’s decision-making process are highlighted in a saliency map. The map
is created by calculating a backward propagation pass for an input spectrum (i.e.
calculating the gradient of the network with respect to the input) and saving the
gradient for each energy bin. The average saliency map, created by averaging the
saliency map of each evaluation spectrum, can be seen in figure 5.2. For illustrative
purposes, it is superimposed on the average evaluation input spectrum. Based
on the saliency map, it is apparent that the network pays close attention to the
final few energy bins of the spectrum. Furthermore, the NN also gives the regions
around Ekin ≈ 15 keV and Ekin ≈ 0 keV a higher importance weight, with the rest of
the spectrum being less important for the decision. This illustrates that the sterile
neutrino signature for smaller sterile masses is harder for the network to distinguish.
Additionally, the NN seems to mainly base its output on relative rate differences
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between the beginning and end point of the spectrum, with intermediate energy bins
contributing only marginally.

The statistical fluctuations in each energy bin of the training and evaluation data
propagate to the model output. As the sensitivity contours depend on the model
output, they are also prone to statistical fluctuations. To investigate the impact
of the statistical fluctuations in the evaluation data on the sensitivity contours, the
evaluation dataset was bootstrapped. Bootstrapping involves resampling the evalu-
ation dataset. A grid scan is then performed for each resampled dataset with the
pre-trained model. This is repeated NB = 100 times. The resulting contours are
averaged and the standard deviation for the critical sin2(θ) value for each m4 is cal-
culated to draw a 1σ error band. The results for the PMLP can be seen in figure 5.3.
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Figure 5.3: The mean contour and 1σ uncertainty band for the PMLP. The contour
was calculated by bootstrapping the evaluation dataset. In detail, this means the
spectra used to evaluate each grid point were resampled NB = 100 times and passed
to the pre-trained model. The 100 resulting contours are averaged, and the standard
deviation is used as an uncertainty.
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In conclusion, the NN approach is extremely sensitive to a sterile neutrino signature
in statistically fluctuated data, down to active-to-sterile mixing angles of sin2(θ) =
2×10−2. The models only show a sensitivity loss compared to the statistical exclusion
limit when it comes to smaller sterile masses.

The following section will show that this sensitivity loss can be alleviated by intro-
ducing a PAE response to the datasets, which in particular also boosts the PMLPs
performance to be comparable to the CNN, as shown in figure 5.5. Thus, for the
following studies, the PMLP is chosen as representative model and only the results
for the PMLP will be shown. An additional reason to choose the PMLP as the
representative model for this proof-of-concept study is its shorter training time and
simpler architecture.

5.2 Detector related Effects

The spectrum measured by the TRISTAN detector will not simply be a statistically
fluctuated β-electron energy spectrum like in figure 4.6. There are numerous experi-
mental effects that modify the resulting spectrum. The most dominant effects at the
time of writing this thesis are expected to be stemming from the RW, and detector
related effects. This section demonstrates that the NN approach is largely insensitive
to systematic uncertainties connected to detector related effects. In order to achieve
this, the detector related effects will be introduced iteratively to all datasets in this
section. In each iteration, the sensitivity using a PMLP is investigated for different
realizations of the parameter carrying the systematic uncertainty. This is done to
check whether the sensitivities evaluated with NNs are diminished by the addition
of systematic effects. An overview of the detector related effects discussed in this
thesis and their uncertainties is in table 5.1.

Parameter Symbol reference value Uncertainty

Post acceleration energy Epae 10 keV -
Dead layer parameter λ 58 nm 2nm
Charge cloud width wcc 20 µm 1 µm

Table 5.1: Parameter values and their systematic uncertainties involved in the mod-
elling of detector related effects. The values were taken from [15].

Response Matrices

To add the experimental effect to the data, the same response matrix approach used
in the TRModel, outlined in section 3.4, was chosen. Thus, detector related effects are
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modelled in form of response matrices that can be convolved with a binned spectrum.
The response matrices are taken from the catalog developed for the TRModel [93]. In
this thesis, electron pitch angle related effects are ignored. All electrons are assumed
to arrive perpendicular to the detector, corresponding to a pitch angle of 0◦. This
reduces the response matrices down to two dimensions: The input energy Ein in the
first and the output energy Eout in the second dimension.

Systematic Uncertainties

The description of experimental effects often depends on parameters that carry a sys-
tematic uncertainty. The focus of this thesis also lies on the effect of these systematic
uncertainties on the NN performance. The systematic uncertainty of a parameter p
describing an experimental effect is modelled by drawing the value of the parame-
ter from a normal distribution centered at the reference value v, with the standard
deviation given by its uncertainty u:

p ∼ N (µ = v, σ = u). (5.1)

Two approaches can be used to introduce systematic uncertainties of parameters
describing experimental effects to the analysis chain when using NNs.

• Drawing the value of p for each spectrum in the training data individually
from N and convolving the spectrum with response matrix corresponding to
the resulting value.

• Using only the reference value v of the parameter p for the entire training data
set.

The evaluation is then performed and compared for different values of the param-
eter p, starting with the reference value, and n standard deviations away from the
reference value µ± n× σ.

Post Acceleration Electrode Response

The first experimental effect added to the datasets is the PAE response. The PAE
voltage is set to 10 kV, and no systematic uncertainty is considered. The reason for it
being discussed here nonetheless is that the sensitivity loss due to systematic effects
and uncertainties in the parameters describing detector related effects is mitigated
by using a PAE [15]. Therefore, the PAE response is added to the data before
the other response matrices. The PAE response simply shifts the input energies
by EPAE = 10 keV and can be seen in figure 5.4. The size of this response matrix is
chosen such that the output data is compatible with the other responses.
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(b) The mean saliency map for a model
trained on statistically fluctuated data with
a PAE response of 10 kV.

Figure 5.4: Effects of adding a PAE response to the data.

By adding this response an interesting effect was discovered: extending the range
of interest beyond 18.6 keV boosts the model performance significantly in the lower
sterile mass region, as demonstrated in figure 5.5. A possible explanation can be
found again by looking at the mean saliency map. The region that influences the
models decision the most is close to the kinematic endpoint of the spectrum (shifted
by EPAE = 10 keV) as shown in figure 5.4. Extending the range of interest beyond
the shifted endpoint and to the left of the beginning of the spectrum, where the
differential decay rate is strictly zero, still influences the decision of the NN. Picking
up on the explanation from section 5.1, these points then serve as additional points
the NN can base a relative difference to the endpoint on. However, these points do
not fluctuate (as they are strictly zero) and thus serve as a good baseline for the
model. This makes it easier to detect the sterile signatures for smaller sterile masses
and consequentially boosts the model performance significantly in the lower sterile
mass region and slightly in the medium mass region. The magnitude of EPAE, which
dictates how far the spectrum is shifted towards higher energies, does not influence
the model performance, further solidifying this explanation (see appendix B). Fur-
thermore, the amount of zero entries itself (dictated by the size of the PAE response
matrix) does influence the model performance slightly (see appendix B). This theory
has to be studied further to reach a distinctive conclusion.

For the following studies, the PMLP is chosen as representative model and only
the results for the PMLP will be shown. This is because after extending the range-
of-interest beyond the kinematic endpoint, like with a the PAE response, the PMLP
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Figure 5.5: In this figure, the PMLP sensitivity to the sterile neutrino signature
when training on statistically fluctuated data before and after adding a PAE re-
sponse are compared. The PAE response increases the range-of-interest (ROI). This
improves the NNs sensitivity to smaller sterile neutrino masses significantly.

performance is comparable if not better than that of the CNN based architectures.
Furthermore, the PMLP is faster to train and utilizes a simpler architecture.

Detector Dead Layer

The detector dead layer width and electron backscattering are the first two detector
effects that are investigated. An explanation of these two effects can be found in
section 3.4. Both are responsible for energy deposition losses. The uncertainty
associated with the probability of the electron backscattering at the detector is
neglected in this work. Please refer to [15] for more information on the construction
of the response matrices. The detector dead layer is described by the parameter λ,
which indicates the width of the dead layer and carries a systematic uncertainty (see
table 5.1). The electron backscattering and detector dead layer response is shown in
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figure 5.6.
A PMLP is now trained on data containing the response with the dead layer param-
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Figure 5.6: Illustration of the detector dead layer and electron backscattering and
back-reflection response. Shown is the spectrum after applying the dead layer re-
sponse for different input energies (a), and one exemplary spectrum after applying
the response (b). The detector response for different input energies exhibits a peak
at the input energy, which is then broadened to the left from dead layer energy loss.
It also contains a silicon escape peak 1.74 keV below the main peak and a backscat-
tering tail extending to lower energies. The backscattering tail is clearly noticeable
in the spectrum itself for energies smaller than 10 keV.

eter λ at its reference value of 58 nm. It is then evaluated on a dataset containing
responses with λ±nσ it has not seen during training. The PMLPs performance is
shown in figure 5.7. The sensitivity contour is robust under changes in the dead layer
parameter of up to 2σ, corresponding to a dead layer parameter of λ+2σ = 62nm.
Here, the performance decreases for small sterile-to-active mixing angles sin2(θ).
A possible explanation being that in this case the variance of the model output
gets larger for small sin2(θ). This makes increases the range of fluctuations in
the mean. Only with larger deviations from the reference value it starts to lose its
predictive power. The effect that varying λ has on the data is illustrated in figure C.1.

When drawing λ ∼ N (µ = 58nm, σ = 2nm) for each spectrum in the training
dataset individually and then using a fixed value λ±nσ, the contour for λ±2σ gets
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Figure 5.7: Sensitivity contours for various dead layer parameters (λ). The model
is trained using data corresponding to the reference value λ = 58nm but evaluated
for other λ values to account for systematic uncertainty. For λ values offset by
twice the uncertainty (σλ = 2nm), model performance breaks down completely
for λ±3σ = 64nm. This behavior is symmetric for λ < 58 nm. Uncertainty bands
are derived by resampling the evaluation dataset NB = 10 times.

smoother. This is illustrated in figure 5.8. In that case, however, the training budget
had to be doubled to 40 epochs to achieve a comparable performance, whereas a
larger training budget in the former case does not lead to a better performance. The
higher variance resulting from varying λ-values in the training dataset also leads to
a slight performance decrease for smaller sterile-to-active mixing angles sin2(θ).

In conclusion, the model is robust even when evaluating it on data containing pre-
viously unseen dead layer responses with λ values of up to 2σ away from the reference
value. Incorporating the systematic uncertainty by varying λ in the training dataset
makes model performance stay consistent even further away from the reference value,
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Figure 5.8: The effect of introducing the systematic uncertainty to the training
dataset. The model is trained using data with dead layer parameters λ ∼ N (µ =
58nm, σ = 2nm), and evaluated on datasets with fixed λ±nσ. A small sensitivity
loss is observed when the dead layer width is significantly decreased λ > 68 nm.
Nonetheless, the significance of this loss is difficult to quantify precisely due to the
statistical uncertainty of the evaluation.

at the cost of a larger training budget and a slight performance decrease. Thus, the
latter strategy should be used for parameters with large systematic uncertainties, to
guarantee a more predictable model performance. A comparison with the χ2-based
approach from equation 4.18 is shown in figure 5.9.

Charge Sharing

The TRISTAN SDD consists of 166 hexagonal pixels per module. When incident
electrons strike near a pixel boundary, the generated charge is shared between adja-
cent pixels. The proportion of charge shared with neighboring pixels is determined
by the proximity of the hit position to the pixel boundary and the lateral spread
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Figure 5.9: Comparison between the sensitivity contours of the NN-based and
the χ2-based approaches. Shown is the contour of the PMLP trained on data with
dead layer parameters λ ∼ N (µ = 58nm, σ = 2nm) and evaluated on a dataset
with a fixed λ = 58nm (dashed line). Adding the dead layer response for λ = 58nm
to the dataset results in the purple contour. Incorporating a systematic uncertainty
of σ = 2nm via a covariance matrix results in the orange contour.

of the charge cloud wcc. The latest measurements report a charge cloud width
of wcc = (16.3±0.2) µm [90]. Nonetheless, to ensure consistency with previous stud-
ies, the value currently used in the TRModel and reported in table 5.1 is applied in
this study. The hexagonal shape of the pixel is neglected during modelling as the
pixel radius rpx = 1.5mm is much larger than wcc [15]. The charge sharing response
is shown in figure 5.10.

The NN is trained on data with wcc = 20nm, and evaluated on data with wcc
shifted by up to three times the uncertainty σw = 1nm. Figure 5.11 demonstrates
that the NN is very robust under unexpected deviations from the reference value
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5.2 Detector related Effects
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Figure 5.10: Demonstration of the detector charge sharing response. Shown is
the resulting spectrum after the response for different input energies (a), and one
exemplary spectrum after applying the response (b). For these results, a charge
cloud width of wcc = 20nm and detector pixel radius of rpx = 1.5mm were used.

for wcc. When introducing the systematic uncertainty to the training dataset,
i.e. sampling wcc ∼ N (µ = 20nm, σ = 1nm) for each sample in the training
dataset, the performance of the NN stays robust for charge cloud width values of
up to wcc = 40nm, as shown in figure 5.12. The effect that varying wcc has on
the data is illustrated in figure C.1. From this it is apparent that the impact of
varying the charge sharing width wcc on the sterile neutrino signature is very small.
A comparison with the χ2-based approach from equation 4.18 is shown in figure 5.17.

In conclusion, the NN performance stays consistent for effects that do not strongly
affect the sterile neutrino signature, especially if they are encoded in the training
dataset.

Energy Resolution

To model a general energy resolution of the detector, each spectrum in the dataset
is subject to Gaussian smearing with a standard deviation of σER. The model is
trained on β-spectra with a bin width of 100 eV and no Gaussian smearing. It is
evaluated on spectra containing σER = [100, 200, 300] eV. The results are shown in
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Figure 5.11: In this figure, the sensitivity contours for various charge sharing widths
(wcc) are shown. The model is trained using data corresponding to the reference value
wcc = 20nm but evaluated for other wcc values to account for systematic uncertainty.
The model performance completely breaks down for shifts of 4 nm. This behavior is
identical for decreasing wcc.

figure 5.14.

The NN performance is only slightly affected by differing energy resolutions. This
illustrates that the model can optionally be trained without having to take the total
energy resolution of the detector into account, as long as it does not deviate from the
bin width by more than 200 eV. To ensure optimal performance, however, the de-
tector’s energy resolution should be fixed to the actual value for the training dataset.

In conclusion the NN method is not strongly affected by the systematic uncertain-
ties discussed above. Similarly, as shown in Figure ??, χ2-based methods are also
only slightly impacted by these systematic effects and the corresponding systematic
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Figure 5.12: In this figure, the sensitivity contours for various charge sharing widths
(wcc) are shown. The model is trained using data with charge sharing parame-
ters wcc ∼ N (µ = 20nm, σ = 1nm), and evaluated on datasets with in fixed wcc,±nu.
The model performance stays robust even for shifts of up to 20 nm, at the overall
cost of some sensitivity.

uncertainties. If larger deviations from the reference value are expected, it helps to
introduce the systematic uncertainty in the training dataset, at the cost of a larger
training budget and a slight performance decrease. Here, the network’s performance
surpasses the χ2 method in the case of the detector dead layer systematic.

5.3 Effect of Modelling Inaccuracies

The goal of this section is to conduct a qualitative analysis of the impact of more
general shape uncertainties and biased training data on the sensitivity to the sterile
neutrino signature with NNs.

The general shape uncertainty serves as a proxy for potential systematic uncer-
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Figure 5.13: Comparison between the sensitivity contours of the NN-based and
the χ2-based approaches. Shown is the contour of the PMLP trained on data with
charge cloud width parameters wcc ∼ N (µ = 20nm, σ = 1nm) and evaluated
on a dataset with a fixed wcc = 20nm (dashed line). Adding the charge sharing
response for wcc = 20nm to the dataset results in the purple contour. Incorporating
a systematic uncertainty of σ = 1nm via a covariance matrix results in the red
contour.

tainties that could impact the shape of the tritium β-decay spectrum, particularly
in the form of a smooth energy-dependent function.

The NN-based approach is not strongly affected by systematic uncertainties, if
the parameters that encode a systematic effect are varied in the training dataset.
However, small modifications of the shape that are previously unknown or that stem
from modelling inaccuracies can not be treated this way. Therefore, the case of using
biased training data is investigated. "Biased" training data means that the training
data and evaluation data are fundamentally different. This is achieved by applying
a small and smooth random perturbation to only the evaluation dataset.
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Figure 5.14: In this figure, the sensitivity contours for three different energy res-
olutions are shown. The model is trained on β-spectra with a bin width of 100 eV,
but without any gaussian smearing. Each β-spectrum in the evaluation dataset is
convolved with a gaussian filter with width σER.

5.3.1 Shape Uncertainty

First, the impact of a systematic uncertainty affecting the shape of the tritium β-
decay spectrum is studied in a more generic way. For this purpose, a shape factor
polynomial is used to model a systematic effect, with its coefficients being drawn
from a normal distribution centered at zero to model a systematic uncertainty. It
is demonstrated that the sensitivity evaluated with NNs is not strongly dependent
on the precise knowledge of the spectral shape and therefore the sensitivity does
not degrade when evaluated under smaller systematic uncertainties that affect the
shape of the spectrum, provided that the changes to the tritium β-decay spectrum
are smooth functions of energy.

Each spectrum in a dataset is multiplied with a polynomial function of the electron
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kinetic energy Ee

p(x) = 1 +
n∑

i=1

ci · xi, x =
Ee − E0

E0
, (5.2)

where E0 is the kinematic end point of the spectrum, n the degree of the polynomial
and ci ∈ R the coefficients. Because of the currently ongoing KATRIN neutrino
mass measurement, previous efforts to understand the spectral shape have primarily
focused on the region near the endpoint. Therefore, uncertainties on the spectral
shape are assumed to increase at lower β-electron energies. To simulate the impact
of a spectral shape uncertainty on the sensitivity, the spectral shape is allowed to
vary within a band of width σ, as illustrated in figure 5.15.

Optionally, for each sample in the training data, the coefficients ci can be drawn
from a normal distribution with a mean of zero and a standard deviation of σ = 0.01.
With the current hyperparameters and training budgets it was not possible to achieve
a robust result for larger σ. For each sample in the evaluation data, the ci are set
to a fixed value. In both cases, after multiplication with a shape factor polynomial
each spectrum is rescaled to be in agreement with the total measurement statistics
of 2× 1015 β-electrons for one year of measurement time. This affects the shape of
the uncertainty band shown in figure 5.15.

The results of the PMLP can be seen in figure 5.16. The model performance stays
robust for ci < 0.05. Larger values start to have an effect on the NNs sensitivity
to the sterile neutrino signature. A comparison with the χ2-based approach from
equation 4.18 is shown in figure 5.17.

5.3.2 Biased Model

The goal of this study is to conduct a qualitative analysis of the impact of using
biased training data on the NNs performance. To conduct this study, the NN is
trained on statistically fluctuated data containing a PAE response. A perturbation
is applied to the evaluation data (bias), and the NNs sensitivity contour is drawn.

Generating perturbations

Because the concept of a "biased model" is broad, the focus is set on a specific
subset of random perturbations. By adopting a simple yet generic shape distortion
function, the relevance of the analysis is preserved while ensuring it remains simple
and interpretable. In this study, the random perturbations b(x) are represented as a
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Figure 5.15: This figure illustrates an assumed 1σ shape uncertainty of the tri-
tium β-decay spectrum. The dashed lines represent the spectrum after multiplica-
tion with a shape factor polynomial of degree three. For the linear, quadratic and
cubic coefficients an uncertainty of σ = ±5% is used. This means that coefficients
used for scaling the training data are sampled from a normal distribution with a
width of 1σ. Shown below are random realizations of the shape factor polynomial
applied to a constant function.

sum of normal distributions

b(x) = N ·
n∑

i=1

Ai · exp
−(x− µi)

2

2σ2
i

, x = Ee, (5.3)

with the number of normal distributions n, the amplitude Ai, mean µi and standard
deviation σi of the individual distributions, and the overall normalization of the
perturbation N as tunable parameters. Additionally, a constraint on the smoothness
and monotonicity can be applied. The arbitrary shape function samples with and
without a smoothness and monotonicity constraints chosen for this study can be seen
in figure 5.18. Figure 5.19 shows the impact of differing the perturbation amplitude
parameter N for this specific shape function on a sterile neutrino signature.
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Figure 5.16: Effects of adding a third degree shape factor polynomial to the eval-
uation dataset. The contour is drawn for the shape factor coefficients ci at different
fixed values. The performance on the mean spectrum is shown as a reference. The
performance starts to deteriorate for shape factors with ci > 0.05.

Neural network performance

The NN is trained only on data with statistical uncertainty and a PAE response,
not containing the shape functions. The particular shape functions shown in fig-
ure 5.18 are used for the evaluation of the NN. They are applied to each spec-
trum in the evaluation dataset. This is repeated for three different total ampli-
tudes N =

{
10−7, 10−6, 10−5

}
. The impact of the amplitude parameter N on the

sensitivity to the sterile neutrino signature using the PMLP is shown in figure 5.20.
The PMLP is largely unaffected by perturbations with an amplitude of up to 10−5,
even though they significantly change the sterile neutrino signature. Furthermore,
the sensitivity is not affected when considering a shape function without constraints,
as also illustrated in figure 5.20.

Repeating this for different realizations of the random shape functions produces
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Figure 5.17: Comparison between the sensitivity contours of the NN-based and
the χ2-based approaches. Shown is the contour of the PMLP trained on data with
shape factor coefficients ci ∼ N (µ = 0, σ = 0.01) and evaluated on a dataset with a
fixed ci = 0 (dashed line). Incorporating a systematic uncertainty of σ = 0.01 via a
covariance matrix results in the purple contour.

an identical result. A comparison with a χ2-based approach was not feasible due to
fit-convergence issues.
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Figure 5.18: Example of random perturbations constructed from 8 different gaus-
sian distributions shown in gray. The amplitudes of the gaussians are not to scale.
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Figure 5.19: This figure illustrates the impact of the bias function amplitude N on
the sterile neutrino signature. The theoretical sterile signature (violet) is modified
by perturbation amplitudes varying between the three plots (orange). The perturbed
theoretical spectrum is used to generate MC data (red). A NN trained on unper-
turbed spectra is then evaluated on spectra with specific perturbation amplitudes.
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Figure 5.20: The sensitivity contours using a PMLP for different normalizations N
of the two bias functions shown in figure 5.18. The PMLP is not impacted by the bias
function and all three normalization values considered in this analysis. The effect of
the bias function normalization on the sterile neutrino signature is illustrated in fig-
ure 5.19. The constraints on the perturbation do impact the network’s performance,
as illustrated by the exclusion line for a perturbation without constraints.
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Chapter 6

Conclusion and Outlook

This thesis has demonstrated that various neural networks (NNs) are a powerful
and effective tool for detecting the signature of a keV-scale sterile neutrino in the
tritium β-electron energy spectrum. To that end, a library was developed to handles
the training and evaluation of different NN architectures.

The NN method achieves a statistical sensitivity to the sterile neutrino signature
comparable to the χ2-method for statistically fluctuated data, which is close to an
active-to-sterile mixing angle of 2× 10−7 for a total measurement time of one year.
The statistical limit is not strongly affected when experimental effects are included
in the data.

The results demonstrate that the sensitivity to a sterile signature using the NN
approach is not strongly affected by systematic uncertainties of detector related
effects. This was achieved by evaluating the NN performance on mock data for
which the parameters describing detector systematics were perturbed according to
their nominal values by multiples of their systematic uncertainties.

Furthermore, it is shown that the exact shape of the β-spectrum does not need to
be known to a precision level close to the size of active-to-sterile neutrino mixing for
the NN approach to be sensitive to a sterile neutrino signal. This was accomplished
by introducing a shape uncertainty to the β-spectrum, by which the NN was not
strongly affected.

Finally, it is established that the NN approach is not strongly affected by un-
expected smooth perturbations with amplitudes of up to two orders of magnitude
above the active-to-sterile neutrino mixing. This was demonstrated by adding a
shape function consisting of a sum of gaussians with a certain overall amplitude to
only the evaluation dataset, for which the NN performance stayed consistent.

However, the work in this thesis is just the first step to using a NN-based ap-
proach for the analysis of measurement data from the TRISTAN detector upgrade
of KATRIN. Further development is necessary in three main areas.

First, the experimental effects still missing must be incorporated. So far, only
general shape distortions and detector related effects have been taken into account.
Significant experimental effects inflicted with large systematic uncertainties like the
electron backscattering at the rear wall of KATRIN have yet to be addressed. The NN
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then needs to be trained with all experimental effects enabled and evaluated with
all systematic uncertainties taken into account, which could affect the performance
heavily and require larger datasets and training budgets. After this step, the NN
could be used as a flag for false positives / false negatives accompanying the tradi-
tional analysis.

Second, sterile neutrino parameter regression must be implemented. Currently,
the NNs perform only BC, categorizing input spectra as either containing or not
containing a sterile neutrino signature. To achieve a fair comparison with traditional
parametric fitting methods, the NNs must be extended to infer the sterile neutrino
mass (m4) and the sterile-to-active mixing angle (sin2(θ)) for a given input.

Third, the open questions from this work need to be addressed. For example, the
positive impact of including the post-acceleration electrode (PAE) response on NN
performance requires further investigation. Preliminary insights into this effect, de-
rived using saliency maps of the NNs, have been developed in this thesis, but further
studies are required to confirm those findings.
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List of Acronyms

DM Dark Matter

CMB Cosmic Microwave Background

WIMP Weakly Interacting Massive Particle

SM Standard Model of Particle Physics

KATRIN KArlsruhe TRItium Neutrino

GWS Glashow-Weinberg-Salam

PMNS Pontecorvo-Maki-Nakagawa-Sakata

SSB Spontaneous Symmetry Breaking

CMB Cosmic Microwave Background

HDM Hot Dark Matter

WDM Warm Dark Matter

CDM Cold Dark Matter

FPD Focal Plane Detector

SDD Silicon Drift Detector

WGTS Windowless Gaseous Tritium Source

RW Rear Wall.

MS Main Spectrometer.

PS Pre-Spectrometer

CMS Calibration and Monitoring System
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DPS Differential Pumping Section

CPS Cryogenic Pumping Section

MAC-E Magnetic Adiabatic Collimation with Electrostatic filtering

PAE Post-acceleration Electrode

DAQ data aquisition

MC Monte Carlo

NN Neural Network

ML Machine Learning

BC Binary Classification

MLP Multilayer Perceptron

PMLP Parametrized Multilayer Perceptron

CNN Convolutional Neural Network

ResNet Residual Neural Network

p.d.f. probability density function

CL confidence level
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Appendix A

Neural Network Hyperparameters

The values of the hyperparameters were derived based on the results from the
Bayesian Hyperparameter Optimization tool SMAC3 [106]. The F1-Score on the
validation dataset was used as the optimization target. 20 training epochs were used
as the maximum training budget. The duration of one hyperparameter optimization
process was set to 16 hours, regardless of the model size. This could have impacted
the results for especially the deeper architectures, with longer runs being planned for
the future. For studies in sections 5.2, 5.3.1 and 5.3.2, the maximum training budget
was adjusted, but the other hyperparameters were kept the same.

Model Architecture Training Epochs Batch Size Initial Learning Rate Weight Decay

(P)MLP 20 25000 10−3 10−6

CNN 20 1000 5× 10−5 10−6

ResNet - MLP 20 128 3× 10−3 8× 10−7

ResNet - CNN 20 6000 2× 10−3 -

Table A.1: Training-related hyperparameters for all models shown in figure 5.1.

Model Type CNN (P)MLP

Hidden Layers 3 2
Ch. / Lin. Dim. [128, 256, 128] [256, 256]

Kernel Sizes [16, 16, 16] -
Batch Norm Layers [✓, ✓, ✓] [✓, ✓,]

Dropout Prob. - −

Table A.2: Architecture-related hyperparameters for the MLP and CNN shown in
figure 5.1.
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ResNet Block Type CNN MLP

Block Length 3 3
Ch. / Lin. Dim. [137, 61, 96] [nbins, 128, 128]

Kernel Sizes [1, 5, 7] -
Batch Norm Layers [✓, ✓, ✓] [✓, ✓, ✓]

Dropout Prob. - [0.5, 0.5, 0.5]
Number of Blocks 3 3

Table A.3: Architecture-related hyperparameters for the ResNet MLP and
ResNet CNN shown in figure 5.1.
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Appendix B

Post Acceleration Electrode Response
Investigations

This chapter discusses the investigation regarding the effect of the PAE presented
in section 5.2 in more detail. In particular, the effect of adding a PAE response
without also expanding the energy range further than the shifted endpoint energy
(figure B.1), as well as adding no PAE response and just extending the energy range
beyond the endpoint (figure B.2) is investigated. This results in appending entries
with a value of zero either to the beginning or the end of the statistically fluctuated
spectrum. The model performance gradually improves for both cases, but saturates
after a certain value. This effect has to be investigated further to reach a conclusive
explanation.
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(a) Sensitivity contours for different PAE responses without increasing the energy range
beyond the shifted kinematic endpoint of the tritium β-spectrum.
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(b) Illustration of the effect of a PAE response without an additional energy range increase
beyond the shifted kinematic endpoint on the data.

Figure B.1: Increasing the PAE to larger values increases the PMLPs sensitivity to
smaller sterile masses significantly. This effect saturates at a PAE voltage of 5 kV.

96



0 1 2 3 4 5
m4 (keV)

10
7

10
6

10
5

10
4

10
3

si
n2  

 

Exclusion lines at 95% CL for 2 × 1015 electrons
2 - stat. only

PMLP - Extend by 100 eV
PMLP - Extend by 200 eV
PMLP - Extend by 500 eV
PMLP - Extend by 1000 eV
PMLP - Extend by 5000 eV
PMLP - Extend by 10000 eV

(a) Impact on the sensitivity of extending the range of interest beyond the kinematic end-
point of the tritium β-spectrum.
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(b) Illustration of the effect of extending the range of interest beyond the kinematic endpoint
on the data.

Figure B.2: Increasing the energy range increases the PMLPs sensitivity to smaller
sterile masses significantly. This effect saturates after an increase of 10 keV.
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Appendix C

Supplementary Plots
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Figure C.1: Illustration of the impact of the dead layer parameter λ and the charge
cloud width wcc on the β-decay spectrum after feature standardization (upper part),
as well as the effect on the sterile neutrino signature (lower part).
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Appendix C Supplementary Plots
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(b) Training on data with λ ∼ N (µ =
58nm, σ = 2nm), evaluation on fixed λ =
58nm.
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(c) Training and evaluation on data with
fixed wcc = 20nm
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Figure C.2: Mean saliency maps for various scenarios.
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