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Abstract

Sterile neutrinos do not participate in the weak interaction and are present in most extensions of
the standard model of particle physics. Light sterile neutrinos with a mass on the eV-scale could
explain several anomalies observed in short-baseline oscillation experiments.

The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly determine the
effective electron anti-neutrino mass by measuring the tritium beta decay spectrum in the close
vicinity of the endpoint, where the neutrino mass manifests itself as a small spectral distortion.
The data can also be used to search for the signature of light sterile neutrinos. These would lead
to a kink-like signature further away from the endpoint. Subsequently, exclusion limits on the
active-to-sterile mixing |Ue4|2 and the squared mass m2

4 can be set.

The detector of the KATRIN experiment consists of 148 pixels, which are combined into 14 so-
called patches. Moreover, the data is divided into multiple measurement campaigns. For the
analysis, each data set is described by its own model, which makes the analysis computationally
challenging. For the standard neutrino mass analysis this challenge is solved by applying a neutral
network for the model evaluation.

In this work, two approaches to solve the computational challenge are investigated: the adaptation
of the neural network for the light sterile neutrino analysis and a simplification of the analysis via
the averaging of multiple data sets.

For the former, the software is extended and multiple validation tests are performed. The ap-
plicability of the neural network to the light sterile neutrino analysis is demonstrated. For the
latter, the combination of multiple detector patches into so-called pseudo-patches is investigated,
illustrating that four pseudo-patches would be sufficient for the analysis.

A major part of this thesis is the application of the neutral network to study the sensitivity
of the first five measurement campaigns of the KATRIN experiment and check the impact of in-
dividual systematic uncertainties. As the data is not yet unblinded, the analysis is performed on
a Monte-Carlo copy of the data. The resulting sensitivity shows that important parts of the light
sterile neutrino parameter space could be excluded with the data from the first five measurement
campaigns. These include the part of the gallium anomaly currently not excluded by oscillation
experiments as well as almost all of the parameter space corresponding to the claimed observation
of the Neutrino-4 experiment.
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Chapter 1

Neutrino Physics

Originally postulated as an emergency solution to explain contradictory observations almost a
century ago, the neutrino and the determination of its properties remains of major interest for
particle physics and cosmology. The observation of neutrino oscillations has shown that neutrinos
are not massless and therefore offered the first experimental evidence that the standard model
of particle physics (SM) is incomplete. Determining the neutrino mass as well as the search for
new particles, called sterile neutrinos, is actively pursued by experiments. Throughout this thesis,
natural units (ℏ = c = 1) are used.

1.1 Postulation and Discovery

The existence of the neutrino was postulated in 1930 by Wolfgang Pauli to explain the observed
energy spectrum of beta decay electrons [1]. Contrary to the expectation of a sharp peak centered
around the endpoint energy of the decay, a continous spectrum was observed (see Figure 1.1),
which seemed to violate conservation laws and could not be explained by a two-body decay. Pauli
proposed a new, electrically neutral, spin- 12 particle to be emitted together with the electron in the
decay. The energy would then be shared between these two particles and the daughter nucleus,
resulting in a continous energy spectrum. Due to its weak interaction with matter, the existence
of the neutrino was only experimentally confirmed in 1956. The project poltergeist, lead by C. L.
Cowan and F. Reines, was located near the Savannah River Plant nuclear reactor and employed a
liquid scintillator for γ-ray detection as well as a tank containing a solution of cadmium chloride
in water. The emitted electron anti-neutrinos undergo inverse beta decay with the protons in the
liquid scintillator,

νe + p → e+ + n. (1.1)

The resulting positron annihilates with sourrounding electrons, releasing two γ-rays. With some
time delay the neutron is captured by the cadmium, releasing a single γ-ray. Subsequently, the
scintillation light produced by these γ-rays is detected. The measured signal of two coincidental
peaks with some time delay could then be identified as induced by an electron anti-neutrino [2]. In
1962, the Brookhaven experiment measured muon neutrinos νµ for the first time [3], and in 2000
the DONUT experiment provided evidence for the existence of the tau neutrino ντ [4].

These observations have shown that there is one neutrino for every type of lepton, called the
lepton flavor. In the SM, this is described by three leptonic families,(

νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)
; (1.2)

with the charged leptons of charge q = −e and the neutral neutrinos. The neutrinos are further
assumed to be massless in this description [5].
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Figure 1.1: Sketch of the observed energy spectrum of beta decay electrons in comparison
to the expected spectrum. The continuous spectrum cannot be explained by a two-body but
a three-body decay.

1.2 Neutrino Oscillations

In 1968, the Homestake experiment measured the flux of electron neutrinos from 8B decay in the
sun. The observed flux was smaller than what was expected, which became known as the solar
neutrino problem [6]. Pontecorvo had already brought up the idea of neutrino−anti-neutrino oscil-
lations in 1958 [7] and in 1962 Maki, Nagakawa and Sakata introduced the possibility of neutrino
flavor oscillations [8]. Pontecorvo also anticipated the solar neutrino problem in 1967 [9], shortly
before its observation.

Neutrinos are produced and detected in their flavor eigenstates |να⟩; α ∈ {e, µ, τ} in weak charged
current interactions. These states are not identical to the eigenstates of the Hamiltonian of the
free particles |νi⟩; i ∈ {1, 2, 3}, which have a defined mass mi. The flavor eigenstates can be viewed
as a linear superposition of the mass eigenstates,

|να⟩ =
3∑

i=1

Uαi |νi⟩ , (1.3)

where Uαi are the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Even
though neutrinos interact in their flavor eigenstates, they propagate through time and space in
their mass eigenstates. If the neutrinos have masses mi with small differences, this can lead to a
macroscopic effect where they periodically change their flavor [10, 5, 11].

To better understand this concept, it is common to look at the simplified case of only two neutrinos
with α ∈ {e, µ} and i ∈ {1, 2}. The PMNS matrix can then be written as the rotation matrix in
two dimensions and Equation 1.3 as(

|νe⟩
|νµ⟩

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
·
(
|ν1⟩
|ν2⟩

)
. (1.4)

The time evolution of the mass eigenstates is described by

|νi(t)⟩ = exp(−iEit) |νi(0)⟩ , (1.5)
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1.2. Neutrino Oscillations

where Ei =
√
p2
i +m2

i are the energy eigenvalues of the mass eigenstates with pi the spatial
momentum the neutrino is produced with. Assuming an electron neutrino is produced in a weak
charged current interaction at t = 0, the state will evolve in time according to

|νe(t)⟩ = exp(−iE1t) cos(θ) |ν1⟩+ exp(−iE2t) sin(θ) |ν2⟩ . (1.6)

Using Taylor expansion for highly relativistic neutrinos, the energy can be estimated by Ei ≃
|p| + m2

i /2|p|, also using |p| = |pi|, since |pi| ≃ |pj | ∀ i, j. The probability to still observe an
electron neutrino after some time t is then given as

Pνe→νe = |⟨νe(t)|νe⟩|2 = 1− sin2(2θ) sin2
(
∆m2

21L

4|p|

)
, (1.7)

with ∆m2
21 := m2

2 −m2
1 the difference of the squared masses and L the distance the neutrino has

travelled in the time t. The probability to find a muon neutrino is

Pνe→νµ
= 1− Pνe→νe

= sin2(2θ) sin2
(
∆m2

21L

4|p|

)
. (1.8)

These relations show that the probabilities oscillate as a function of L/|p| and that it is not certain
that the neutrino will be detected in the same flavor it was produced, if the following conditions
hold:

θ ̸= 0 and θ ̸= π

2
, (1.9)

∆m2
21 = m2

2 −m2
1 ̸= 0. (1.10)

Condition 1.10 is only fulfilled if the masses m1 and m2 are not equal and at most one of them is
equal to zero.

For the real case of three neutrino generations, α ∈ {e, µ, τ}, constraint 1.9 has to be fulfilled
for all mixing angles and the additional constraints on the difference of the squared masses are

∆m2
31 = m2

3 −m2
1 ̸= 0, (1.11)

∆m2
32 = m2

3 −m2
2 ̸= 0. (1.12)

Like in the two neutrino scenario, the conditions 1.10, 1.11 and 1.12 are fulfilled if all three masses
are different and at most one of them is equal to zero [10, 5, 11]. An observation of neutrino oscilla-
tions would therefore prove that neutrinos are massiv, contradictory to their description in the SM.

In 1998, experimental evidence for neutrino oscillations was provided by the Super-Kamiokande
experiment, by measuring the atmospheric neutrino flux. While the measured number of electron
neutrinos did not deviate significantly from expectations, the observed ratio of muon to electron
neutrinos did. Therefore, it was concluded that the muon neutrinos change their flavor to tau
neutrinos and that these measurements give evidence for neutrino oscillations [12].

Three years later, the Sudbury Neutrino Observatory (SNO) published results further confirm-
ing these observations. The SNO measured solar neutrinos from 8B decay and found a deficiency
in the flux of electron neutrinos in comparison to the total neutrino flux. This lead to the conclu-
sion that not all observed solar neutrinos are electron neutrinos and that some of the 8B electron
neutrinos change their flavor [13]. In a follow-up SNO publication, it was observed that the to-
tal flux is made up of equal parts of all three flavors, thus resolving the solar neutrino problem [14].

The observation of neutrino oscillations has shown that neutrinos periodically change their fla-
vor and that neutrinos must be massive particles. However, from oscillation experiments only the
mixing angles θαi and the splittings between the three masses ∆m2

ij can be determined. What

remains unknown is the sign of ∆m2
31, which defines the mass hierachy, as well as the absolute

mass scale. Ways to determine the neutrino masses are discussed in the next section.
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Chapter 1. Neutrino Physics

1.3 Neutrino Mass Determination

The determination of the neutrino mass is of great interest, since the mechanism of neutrino mass
creation as well as the absolute mass scale remain unknown. Neutrinos further play an important
role in the formation of large scale structures in the universe, and the knowledge of the neutrino
mass would provide an important input to cosmological models [15]. In the following, the three
main approaches to determining the neutrino mass are discussed.

1.3.1 Cosmology

With a number density of 339 relic neutrinos and anti-neutrinos per cm3, neutrinos are the second
most abundant particle in the universe and therefore play an important role in its evolution. From
cosmological measurements the neutrino energy density Ων can be determined, which directly
depends on the sum of all neutrino masses [16],

mΣ =
∑
i

mi. (1.13)

The current upper limits at 95% confidence level (C.L.) range frommΣ ≤ 0.087 eV tomΣ ≤ 0.54 eV
[17], strongly depending on the used model and data.

1.3.2 Neutrinoless Double Beta Decay

Another way to determine the neutrino mass would be the observation of neutrinoless double beta
decay (0νββ). Normal double beta decay (2νββ) is the rarest nuclear weak process, where two
neutrons decay simultaneously into two protons under emission of two electrons and two electron
anti-neutrinos,

(Z,A) → (Z + 2, A) + 2 e− + 2 νe, (1.14)

where Z is the atomic charge and A the atomic number. If neutrinos are Majorana particles
and therefore their own anti-particles, 0νββ would be possible. The two neutrinos would not be
emitted,

(Z,A) → (Z + 2, A) + 2 e−, (1.15)

and the decay would therefore violate lepton number conservation [18].

The experimental signature of 0νββ is a small peak at the endpoint of the 2νββ energy spec-
trum, since the two electrons share almost all of the energy. Experiments can determine the decay
rate Γ0νββ , which is proportional to the effective majorana mass

⟨mββ⟩ =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ . (1.16)

Note that ⟨mββ⟩ is the coherent sum of the neutrino masses, where the matrix element U2
ei contains

unknown CP -violating Majorana phases, which can lead to cancelations in the sum. Therefore,
⟨mββ⟩ could be smaller than each mi [19].

To this day, 0νββ has not been observed, but upper limits on ⟨mββ⟩ have been set. Current
limits at 90%C.L. are provided by GERDA with ⟨mββ⟩ < (0.079− 0.180) eV [20] and KamLAND-
Zen with ⟨mββ⟩ < (0.036 − 0.156) eV [21]. These limits are however only valid if neutrinos are
Majorana particles.

1.3.3 Kinematics of Beta Decay

In contrast to the two methods described above, the kinematics of single beta decay provide a
model independent method to probe the absolute neutrino mass scale. In beta decay, a neutron

4



1.3. Neutrino Mass Determination

decays into a proton under emission of an electron and an electron anti-neutrino,

(Z,A) → (Z + 1, A) + e− + νe. (1.17)

The surplus energy Q is shared between the kinetic energy of the electron E, the total energy of
the neutrino Eν and the recoil energy on the daughter nucleus Erec [22, 23]. The endpoint energy
is then

E0 = Q− Erec = E + Eν , (1.18)

which shows that the maximum energy the electron can have is

Emax = E0 −mν , (1.19)

i.e. the difference of the endpoint energy and the effective electron anti-neutrino mass,

mν =

√∑
i

|Uei|2 m2
i , (1.20)

which is the incoherent sum of the neutrino masses. The differential decay rate is described by
Fermi’s theory for beta decay as

dΓ

dE
(E,m2

ν) =
G2

F cos2(θC)

2π3
· |Mnuc|2 · F (Z,E) · p(E +me) · Eν

√
E2

ν −m2
ν ·Θ(Eν −mν), (1.21)

with

GF: Fermi constant,

θC: Cabibbo angle,

Mnuc: Nuclear matrix element,

F : Fermi function with atomic charge Z,

p: Momentum of the outgoing electron,

E: Kinetic energy of the electron,

me: Mass of the electron,

Eν : Total energy of the neutrino,

mν : Effective electron anti-neutrino mass (see
Equation 1.20),

Θ: Heaviside step-function.

The full differential beta decay spectrum for tritium with F (Z = 2, E) is shown in Figure 1.2
(left). The differential decay rate (Equation 1.21) is affected by m2

ν in the phase space factor of
the neutrino, Eν

√
E2

ν −m2
ν . This leads to a signature of the neutrino mass in the energy spectrum

close to the endpoint [23, 24], as shown in Figure 1.2 (right) for the beta decay of tritium.
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Figure 1.2: Impact of mν on the tritium beta spectrum. Left: Full energy spectrum
of tritium beta decay with F (Z = 2, E). Right: Zoom-in on the endpoint of the energy
spectrum with different values of mν .
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Chapter 1. Neutrino Physics

To infer mν from the kinematics of beta decay, one has to measure the region of the spectrum with
low energy neutrinos, ideally Emax (see Equation 1.19), which coresponds to the small part very
close to the endpoint of the energy spectrum. Therefore, it is common to choose beta-emitters
with a low endpoint energy. The usual choice is tritium, because of its short half life of 12.3 years
and low endpoint energy of about 18.6 keV [22]. Currently, the best limit on mν is provided by
the KATRIN experiment, with mν < 0.8 eV at 90%C.L. [15]. The KATRIN experiment and its
use of molecular tritium will be discussed in more detail in the next chapter.

1.4 Light Sterile Neutrinos

While results from the Large Electron-Positron collider regarding the decay of the Z boson show
that there are only three light neutrinos that take part in the weak interaction, several anomalies
in neutrino experiments (as reviewed in 1.4.2) could be explained by the existence of additional
neutrino flavors that do not interact weakly. These sterile neutrinos are also present in most
extensions of the SM. The simplest case is that of an additional heavy fourth mass eigenstate ν4,
with mass m4 ≳ 1 eV, that has a very small mixing with the active neutrinos and a large mixing
with a sterile neutrino flavor eigenstate νs. This is often called the (3 + 1) ν model as compared
to the standard 3 ν model. The PMNS matrix would extend to a 4 × 4 matrix and Equation 1.3
would describe the flavor eigenstates as superpositions of the mass eigenstates with α ∈ {e, µ, τ, s}
and i ∈ {1, 2, 3, 4} [25, 26].

1.4.1 Search for Light Sterile Neutrinos

Oscillation Experiments

In the framework of the (3 + 1) ν model, the three active neutrinos mix with the sterile neutrino.
With m4 ≳ 1 eV and therefore

m4 ≫ mi; i ∈ {1, 2, 3}, (1.22)

∆m2
41 ≈ ∆m2

42 ≈ ∆m2
43, (1.23)

∆m2
41 ≫ ∆m2

21,∆m2
41 ≫ ∆m2

32, (1.24)

the mixing would be observable for experimental configurations with 4|p| ∼ ∆m2
4iL, where the

active oscillations are not relevant. Thus, the active-to-sterile mixing can be described in the
two-neutrino approximation:

Pνα→νβ
=

∣∣∣∣δαβ − sin2(2θαβ) sin
2

(
∆m2

4iL

4|p|

)∣∣∣∣ . (1.25)

In general, oscillation experiments are sensitive to the mass splittings ∆m2
4i and the mixing am-

plitudes,

sin2(2θαβ) = 4 |Uα4|2
∣∣∣δαβ − |Uβ4|2

∣∣∣ , (1.26)

depending on the observed neutrino flavor. The two main approaches for the search for light
sterile neutrinos with oscillation experiments are appearence and disappearence searches. The
current anomalies from short-baseline oscillation experiments (as discussed in the next section,
1.4.2) regard the disappearence of electron neutrinos and anti-neutrinos [25]. These experiments
are sensitive to the mass splitting ∆m2

41 and the mixing amplitude for νe → νe,

sin2(2θee) = 4 |Ue4|2
(
1− |Ue4|2

)
= sin2(2θ14). (1.27)

Kinematics of Beta Decay

As discussed before, the electron neutrino produced in beta decay is a superposition of the mass
eigenstates, and hence the beta spectrum is a superposition of three spectra corresponding to the

6
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Figure 1.3: Impact of a light sterile neutrino with m2
4 = (10 eV)2 and |Ue4|2 = 0.2 on the

energy spectrum of tritium beta decay with m2
ν = 0 eV2 and F (Z = 2, E).

different masses mi; i ∈ {1, 2, 3}. Because the difference between these masses is so small, it cannot
be resolved by the KATRIN experiment. Since m4 ≫ mi however, the sterile decay branch could
be resolved and the decay spectrum can be described as a superposition of the active and the
sterile branch:

dΓ

dE
(E,m2

ν ,m
2
4, |Ue4|2) = (1− |Ue4|2)

dΓ

dE
(E,m2

ν) + |Ue4|2
dΓ

dE
(E,m2

4). (1.28)

The decay branch of the sterile neutrino would show as a characteristic distortion of the spectrum
at E = E0 −m4, often called “kink” [25]. The impact of a sterile neutrino on the beta spectrum
of tritium is shown in Figure 1.3. Experiments investigating the kinematics of beta decay are
sensitive to the squared mass of the sterile neutrino m2

4 and the active-to-sterile mixing |Ue4|2 =
sin2(θ14). With ∆m2

41 ≈ m2
4 (since m4 ≫ mi) and Equation 1.27, the constraints on the sterile

parameters from beta decay experiments can be compared to short-baseline electron (anti-)neutrino
disappearence experiments.

1.4.2 Light Sterile Neutrino Anomalies

There are several results from neutrino oscillation experiments that are not fully understood. These
results can, in principle, seperately be explained by the existence of light sterile neutrinos, while
not necessarily consistent with each other. However, none of these observations provide any clear
evidence for light sterile neutrinos. The most prominent results are briefly discussed in this section,
with a synthesis and an assessment of the current situation at the end.

Gallium Anomaly

In calibration measurements of the solar neutrino experiments GALLEX and SAGE, a deficit in
the measured neutrino rate compared to the expected rate was observed [27, 28]. The average
ratio of the measured rate to the expected rate is 0.84± 0.05 at 2.9σ [29], which is known as the
gallium anomaly (GA), since both experiments use the inverse beta decay on 71Ga as the detection
process [25]. The result can be explained by a light sterile neutrino with sin2(2θ14) ≳ 0.14− 0.23
at 2σ for ∆m2

4 ≳ 0.6 eV2, depending on the model for the cross section.

The Baksan Experiment on Sterile Transitions (BEST), specifically designed to investigate the
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Chapter 1. Neutrino Physics

rate deficit observed in previous gallium experiments, published its results very recently. It de-
ployed two 71Ga targets at two different distances from the source, to also take possible rate
differences caused by the oscillation length into account. The observed rates are Rout = 0.77±0.05
and Rin = 0.79 ± 0.05, so no significant difference between the rate in the inner and outer target
is observed [30]. However, the large deviance from unity in both rates makes the GA more pro-
nounced with a weighted average ratio of expected to measured rate for all gallium experiments of
0.80± 0.05 [31].

Reactor Anti-Neutrino Anomaly

The reactor anti-neutrino anomaly (RAA) refers to the deficit in electron anti-neutrino flux ob-
served in short-baseline (L < 100m) reactor neutrino experiments. In 2011, the predictions of the
expected rates for reactor anti-neutrinos were improved [32]. A re-evaluation of these experiments,
in light of these new predicted rates, has shown that the measured neutrino flux is smaller than
expected, with a ratio of measured to expected event rates of 0.943±0.023 at 98.6% C.L. [33]. Like
for the GA, this anomaly can be explained by a light sterile neutrino with sin2(θ14) ≲ 0.14− 0.25
at 2σ for ∆m2

4 ≳ 2 eV2 [34], depending on the model, but also by a false prediction of the anti-
neutrino flux from nuclear reactors.

An updated model provided by Estienne, Fallot et al. (EF model) leads to a significantly better
agreement between the observed and expected neutrino flux [35], although with large uncertain-
ties. In 2021, measurements at a research reactor at the National Research Centre Kurchatov
Institute (KI) were used to re-evaluate the ratio of the 235U to the 239Pu electron spectrum from
nuclear reactors, since these isotopes are the primary source for reactor neutrinos. The observa-
tions suggest that the normalizations of spectra may have been overestimated before, which would
also significantly reduce the discrepancy between the measured and expected anti-neutrino flux in
short-baseline oscillation experiments [36]. With these new models, the ratio of the measured to
predicted event rates deviates only about 1σ from unity [31]. As already mentioned, the primary
source for reactor neutrinos are 235U and 239Pu decays. When comparing the flux from the model
to the data, it is found that it is in agreement for the flux from 239Pu fissions, but not for 235U
fissions, where the measured value is lower than the expected value [37]. In the case of light sterile
neutrinos, one would expect that the deficit is present independently of the fission isotope.

Neutrino-4

The Neutrino-4 collaboration is measuring the anti-neutrino flux of a nuclear reactor on a very
short baseline (6− 12m). They claim to observe a sterile neutrino with ∆m2

41 = (7.3± 1.17) eV2

and sin2(2θ14) = 0.36±0.12 at 2.9σ [38]. This result is controversially discussed by the community.

It has been pointed out that the energy resolution of the detector is neglected in the analysis,
which strongly effects the results and their significance [39, 40]. Further, it was shown that using
a more reliable Monte Carlo method instead of Wilk’s theorem decreases the statisitical signifi-
cance [39]. Also the signal-to-background ratio is quoted as 0.52 [38], which is lower than in most
competitor experiments.

Synthesis and Current Status of Light Sterile Neutrinos

With the new results from BEST, the GA is more pronounced than before. As mentioned above,
the GA can be explained by a light sterile neutrino. However, the data from GALLEX, SAGE and
BEST show no clear νe → νs oscillation pattern and the rates observed by BEST at two different
distances from the source are basically identical. Therefore, the GA provides no clear evidence for
light sterile neutrinos [31].

Independent evidence, such as improved flux predictions and new measurements of the ratio of
235U to 239Pu electron spectra, shows that the origin of the RAA could lie in the prediction of the

8



1.4. Light Sterile Neutrinos

rector neutrino fluxes.

The limits on sin2(2θ14) from the GA are in tension with the ones from the RAA, as it can
be seen in Figure 1.4, where the allowed regions from both anomalies cover distinct parts of the
parameter space.

Both the GA and RAA are based on the comparison of the expected and measured neutrino
flux, where the expected flux depends on the theoretical models for the cross section. To investi-
gate short-baseline oscillations of reactor anti-neutrinos in a model-independent way, the rates at
different distances from the source have to be measured. This approach is persued by the DANSS
[41], PROSPECT [42] and STEREO [43] experiments, which measure the spectrum at different
distances. The results of these experiments are compatible with the no-oscillation hypothesis and
are also in tension with the BEST and GA results [31], as they exclude most of the parameter
space that would be needed to explain the GA with light sterile neutrinos (see Figure 1.4).

Another experiment that measures the rates at different distances from the reactor is Neutrino-4.
The Neutrino-4 result, especially the claim of an observation, is in strong tension with the results
from PROSPECT and STEREO. While the observed oscillatory pattern raises some questions,
its significance is questionable and several problems in the analysis have been pointed out by the
community, as discussed above. Furthermore, the signal to background ratio is very low and the
result should be confirmed with an improved setup. In light of all this, the claim of an observation
may not be justified.

The current results from short-baseline oscillation experiments are not conclusive, but they do
not clearly point towards the existence of light sterile neutrinos. With the RAA on the way to
being solved and the Neutrino-4 result excluded by other experiments, what remains is the GA.
While a large part of the allowed parameter space from the BEST and GA results is already ex-
cluded, there is still some part uncovered by other experiments, indicated by the red shaded area in
Figure 1.4. The KATRIN experiment has the potential to cover this part of the parameter space,
as shown in Figure 1.4. As the search for light sterile neutrinos with the KATRIN experiment is the
topic of this work, this is discussed in more detail in later Chapters. In particular the sensitivity
on the previously discussed parameter space with the latest data is discussed in 6.3.
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Figure 1.4: The current parameter space of light sterile neutrinos with restrictions from
various experiments. For the BEST+GA, RAA and Neutrino-4 experiment the allowed part of
the parameter space according to their respective results is shown. For the other experiments,
the excluded part of the parameter space not allowed from their results is shown shaded. The
parts of the parameter space allowed by the BEST+GA and RAA are in tension as they have
no real overlap. The PROSPECT and STEREO experiments exclude the claimed observation
of Neutrino-4. Also shown are the Mainz and Troitsk experiments, the predecessors of the
KATRIN experiment. For the KATRIN experiment, the currently excluded part is shown
as well as the projected final sensitivity, that could probe the majority of the BEST+GA
parameter space. The part of the BEST+GA parameter space not excluded up to now is
indicated by the shaded red area.
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Chapter 2

The KATRIN Experiment

The Karlsruhe Tritium Neutrino (KATRIN) experiment is aiming to directly measure the effective
electron anti-neutrino mass mν from beta decay of molecular tritium with a sensitivity of 0.2 eV
at 90%C.L. It is the successor of the Mainz [44] and Troitsk [45] direct neutrino mass experiments
and it allows the investigation of the sub-eV neutrino mass scale. In contrast to other methods
of neutrino mass determination, such as cosmological observations or neutrinoless double beta
decay, KATRIN provides a direct neutrino mass measurement, since its result is solely based on
energy-momentum conservation and the kinematics of the decay [46].

2.1 Experimental Setup

The KATRIN experiment is located at the Forschungszentrum Karlsruhe, making use of the
Tritium Laboratory Karlsruhe (TLK), which is equipped with a closed tritium cycle and is li-
censed to handle 40 g of tritium. The tritium source and other tritium related parts can thus be
placed entirely in the TLK. The 70m long experimental setup is shown in Figure 2.1 and made
up of the following main parts [46]:

• Rear section (RS) (see 2.1.1),

• Windowless gaseous Tritium source (WGTS) (see 2.1.2),

• Transport Section with the differential pumping section (DPS) and the cryogenic pumping
section (CPS) (see 2.1.3),

• Spectrometer Section with the pre-spectrometer (PS) and the main spectrometer (MS) (see
2.1.4),

• Detector system with the focal plane detector (FPD) (see 2.1.5),

which are discussed in more detail in the following sections.

2.1.1 Rear Section

The rear section (RS) contains two main components, the rear wall (RW) and an electron gun
(e-gun). The RW is a disc with a gold surface that is placed at the front of the rear section,
being the effective end of the windowless gaseous tritium source (WGTS). It is used to provide a
constant and well-defined electric potential over the full WGTS [46, 47]. The purpose of the e-gun
is to measure the transmission properties of the MS and to determine the energy loss of electrons
due to elastic and inelastic scattering off tritium molecules in the WGTS [48, 49].

2.1.2 Windowless Gaseous Tritium Source

Since only a small fraction of 2 · 10−13 of all beta decay electrons are in the region of 1 eV below
the endpoint, a highly luminous source is needed. The 16m long WGTS is designed to provide
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f)
e)

d)c)
b)

a)

Figure 2.1: Overview of the experimental setup of the KATRIN experiment. a) Rear
section (RS), b) Windowless gaseous tritium source (WGTS), c) Transport section with the
differential pumping section (DPS) and the cryogenic pumping section (CPS), Spectrometer
section with the d) Pre-spectrometer (PS) and the e) Main spectrometer (MS), f) Detector
system with the focal plane detector (FPD). Figure provided by Leonard Köllenberger.

9.5 · 1010 beta decay electrons per second. It houses the inner beam tube with a diameter of
90mm that is operated at a temperature of about 30K in the first two measurement campaigns
and at about 80K afterwards. Molecular tritium (T2) gas with an isotopic purity of over 95% is
injected at the center and pumped out at both ends, with a nominal value for the column density
of 5 · 1017 Molecules/cm2. The other main hydrogen isotopolouges present in the source are DT
and HT [46, 50].

2.1.3 Transport Section

While the WGTS is closed by the RW on one end, it is open on the other end towards the transport
section, which serves the purpose of transporting the electrons from the source to the spectrometer
section. The two main parts of the transport section are the DPS followed by the CPS, which
reduce the tritium flow by 14 orders of magnitude [50].

The DPS contains four turbo-molecular pumps (TMPs) and five super-conducting magnets. To
prevent a straight line of sight from the WGTS to the spectrometer section, the TMPs are inclined
by 20◦ with respect to each other. The super-conducting magnets guide the electrons adiabatically
from the source to the CPS, while a set of dipole and ring electrodes prevent positively charged
ions from the source from passing through the DPS [51].

The final barrier of tritium circulation before the spectrometer section is the 7m long CPS. Seven
super-conductiong magnets guide the electrons to the spectrometer section. The second and fourth
magnets are inclined by 15◦ with respect to each other so that neutral tritium molecules hit the
inner surface of the beamtube, where they are absorbed by a cryo pump, which is covered with a
pre-condensed Argon frost layer [52, 53].

2.1.4 Spectrometer Section

After the transport section, the electrons reach the spectrometer section with the PS and the MS.
Both of these spectrometers operate according to the MAC-E filter principle, applying magnetic
adiabatic collimation in combination with an electrostatic filter. The working priciple of the
MAC-E filter principle is illustrated in Figure 2.2. An inhomogenous magnetic field is generated
by two superconducting magnets, the source magnet at the beginning and the pinch magnet at the
end of the spectrometer with a field strength of Bsrc and Bmax, respectively. This field guides the
electrons towards the center of the spectrometer, where the field strength drops several orders of
magnitude. The electron has a transversal, E⊥, and longitudinal, E∥, energy component. Further,
the electron carries out cyclotron motion around the magnetic field lines with a magnetic moment

12
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Figure 2.2: Working principle of the MAC-E filter. The electrons follow the magnetic field
lines and have to overcome the retarding potential U indicated by the green arrows. Figure
adapted from [54].

µ and angular momentum L. While the strength of the magnetic field drops towards the center
of the spectrometer, the magnetic gradient force transforms the transversial component of the
electron into the longitudinal component, so that µ and L are conserved,

µ =
e

2me
|L| = E⊥

B
= constant. (2.1)

By applying a large negative voltage to the spectrometer vessel, an electric potential, called retard-
ing potential, is formed. The field strength and the transversal energy component are lowest in the
so-called analyzing plane, where the retarding potential U is at its maximum. Consequently, the
electrons are transmitted if their longitudinal energy supercedes the filter energy from the retard-
ing potential, E∥ > eU , so the MAC-E filter acts as a high-energy-pass filter for electrons. The
relative energy resolution ∆E/E arises from the transversal energy component not transformed
into the longitudinal component and is given by

∆E

E
=

Bana

Bmax
, (2.2)

with Bana the magnetic field in the analyzing plane. The maximum acceptance angle for electrons
relative to the direction of the magnetic field is given by

θmax = arcsin

(√
Bsrc

Bmax

)
. (2.3)

Electrons that pass the analyzing plane are then re-accelerated towards the detector section [55, 46].

The PS acts as a pre-filter with a fixed retarding potential of −18.3 kV, rejecting all electrons
with an energy below 18.3 keV. This has the benefit that only electrons with an energy of at least
300meV below the endpoitn of the spectrum make it to the MS. Subsequently, the flux of electrons
in the MS, and therefore the background from e.g. ionization, is reduced [46].
The setup with two spectrometers was originally intended to reduce the flux of electrons into the
MS and therefore minimize background from ionization in the MS [46]. After some time of op-
eration however, it showed that so-called Penning traps are at both ends of the PS, that largely
contribute to the background [56]. Attempts to reduce this background were not successful and

13



Chapter 2. The KATRIN Experiment

consequently the PS is not operated anymore since the end of the fourth measurement campaign.

High energy electrons that pass the PS enter the MS, which is 23.3m long and has a diame-
ter of about 10m. To minimize scattering effects, the MS is operated at an ultra-high vacuum of
10−11 mbar. In the MS, the electrons are analyzed for their kinetic energy, as described above.
By varying the retarding potential, the endpoint region of the beta spectrum can be scanned by
counting the amount of electrons for each retarding potential [46, 55].

As reaching a background rate of O(10)mcps, required for the design sensitivity of 0.2 eV at
95%C.L. within 3 years of measurement time, has proven to be difficult even after several im-
provements, additional measures to reduce the background are required. A method to reduce the
background by a factor of two is the shifted analyzing plane (SAP) configuration. The basic idea
is to reduce the effective volume of the flux tube in the MS and subsequently the background from
Rydberg electrons [57]. This configuration has been tested in the first half of the third measurement
campaign and is used permanently since the beginning of the fourth measurement campaign.

2.1.5 Focal Plane Detector

Electrons that pass the MS are post-accelerated towards the FPD, to increase the detection ef-
ficiency. The FPD is a multi-pixel silicon p-i-n diode detector with 148 pixels arranged in a
dartboard pattern, each with an area of 44mm2 (see Figure 2.3). It has a detection efficiency of
about 93% and a mean energy resolution of about 1.5 keV at full width half maximum [58].
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2.2. Model of the Spectrum

2.2 Model of the Spectrum

2.2.1 Differential Energy Spectrum of Molecular Tritium Decay

The KATRIN experiment uses the beta decay of molecular tritium,

T2 → (3HeT)+ + e− + νe. (2.4)

The differential spectrum for atomic tritium is described in Section 1.3.3 by Equation 1.21 and
shown in Figure 1.2. Several corrections have to be applied to obtain a model for the differential
spectrum of molecular tritium and subsequently the integral spectrum that is actually measured.

After the decay, the daughter molecule (3HeT)+ is left in a rotational, vibrational or electronic
excited final state f with energy Vf and probability Pf . Therefore, the neutrino energy has to be
corrected by Eν → (Eν)f = E0 − Vf − E. The differential decay rate, including the summation
over all final states, is

dΓ

dE
(E,m2

ν) =
G2

F cos2(θC)

2π3
· |Mnuc|2 · F (Z,E) · p(E +me)

·
∑
f

Pf (Eν)f

√
(Eν)2f −m2

ν ·Θ((Eν)f −mν).
(2.5)

Since the accuracy of a neutrino mass measurement depends strongly on the knowledge of the prob-
ability distribution of these final states, called the final state distribution (FSD), precise theoretical
calculations are necessary. Additionally, the FSDs of the daughter molecules of the other hydrogen
isotopolouges present in the WGTS, DT and HT, as well as their respective concentration, have
to be considered [24]. The FSD of (3HeT)+ is shown in Figure 2.4.

Further corrections arise from the Doppler shift caused by the thermal motion of the molecules in
the WGTS and various theoretical corrections, for a more detailed description see [24].
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Figure 2.4: Final state distribution (FSD) of (3HeT)+ from T2 decay. The left part (dark
blue) corresponds to the rotational and vibrational final states, the right part (light blue) to
the electronic excited final states.
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2.2.2 Response Function

Another effect that has to be taken into account is the response function R of the experiment. It
is determined by the probability that electrons pass the MAC-E filter for a given retarding poten-
tial, called the transmission function, and the energy lost by electrons in inelastic scattering with
molecules in the source, which is described by the energy loss function.

The transmission function of the MAC-E filter for isotropically emitted electrons is analytically
given by [46]

T (E; qU) =


0 for E − qU < 0,
1−

√
1−E−qU

E · Bsrc
Bana

1−
√

1−∆E
E · Bsrc

Bana

for 0 ≤ E − qU ≤ ∆E,

1 for E − qU > ∆E.

An example of a transmission function is shown in Figure 2.5 (left). Ideally the transmission func-
tion would be a step function at E = qU , but since the MAC-E filter has a finite resolution ∆E
due to a remaining transversial energy component, electrons with energy qU ≤ E ≤ qU +∆E have
an energy dependent transmission probability.

However, interactions of electrons in the WGTS are not taken into acocunt by the transmission
function. Electrons that scatter inelastically with T2 molecules lose energy, which impacts the
response function. The mean probability to scatter i times in the whole source tube is given by

P̄i =
1

ρd

∫ +L/2

−L/2

ρ(z) · P̄i(z) dz, (2.6)

with ρd the total column density, L the length of the source, ρ(z) the density profile of the source
and P̄i(z) the mean scattering probability at starting position z in the source [59]. The energy
lost when scattering is described by the energy loss function f(ϵ) with ϵ the energy loss. It is
parametrized by [48]

f(ϵ) =


∑3

j=1 Aj exp
(
− (ϵ−µj)

2

2σ2
j

)
for ϵ ≤ ϵc,

f(ϵc)
fBED(ϵc)

· fBED(ϵ) for ϵ > ϵc,

where Aj , µj and σj are the amplitude, mean and standard distribution of three normal distri-
butions and fBED(ϵ) is the functional form of the binary-encounter-dipole (BED) model, which
describes the ionization continuum. The normal distribution part for ϵ ≤ ϵc describes the energy
lost due to excitation and the BED part for ϵ > ϵc describes the energy lost due to ionization of
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Figure 2.5: Left: Transmission function for qU = 18570 eV. Right: Energy loss function
for one through four scatterings. The Gaussian parts correspond to the energy lost due to
excitation and the BED parts to the energy lost due to ionization of tritium molecules.
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Figure 2.6: Response function for a maximum of N = 7 scatterings, qU = 18570 eV and
75% of the nominal column density.

tritium molecules. To get the energy loss function fi(ϵ) for i scatterings, it is convolved i times
with itself [59]. Figure 2.5 (right) shows the energy loss function for one through four scatterings.

The response function is then obtained by convolving the transmission function with the energy
loss function weighted with the corresponding probability for N scatterings [59],

R(E; qU) =

∫ E−qU

ϵ=0

T (E − ϵ; qU) ·
N∑
i=0

P̄ifi(ϵ) dϵ, (2.7)

which is shown in Figure 2.6 with a maximum of N = 7 scatterings, qU = 18570 eV and 75% of
the nominal column density.

2.2.3 Integral Spectrum and Expected Count Rate

From the differential spectrum and the response function the integral spectrum can be calculated:

I(qU) = A ·
∫ E0

qU

dΓ

dE
(E) ·R(E; qU) dE, (2.8)

with A as the normalization of the signal. The expected count rate is then given by

Γ(qU) = I(qU) +B, (2.9)

where B is a constant background rate to account for the measured background electrons.
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2.3 Systematic Effects

Several systematic effects arise from the theoretical models as well as the technical limitations of
the experiment. A brief overview of these effects is given in this section.

Rear Wall

As the RW is hit by electrons and ions, tritiated molecules are formed on its surface. The electrons
emitted in the beta decay of these molecules produce an additional integral spectrum to the one
from the tritium molecules in the source [60]. Consequently, this additional spectrum has to be
accounted for in the analysis. Due to its small contribution, this effect is neglected in the first two
measurement campaigns.

Column Density

Since the column density influences the expected probability of scattering in the source (see Equa-
tion 2.6) and therefore the response function (see Equation 2.7), the uncertainty from the limited
knowledge of the column density has to be taken into account.

Energy Loss Function

The parameters in the parametrization of the energy loss function (see Equation 2.2.2) are de-
termined from a fit to data from dedicated measurements with a corresponding uncertainty [48].
These uncertainties have to be considered, since the energy loss function is used to determine the
response function (see Equation 2.7).

Electron Starting Potential

The plasma in the source defines the starting potential of the electrons [55]. Longitudinal inho-
mogeneities of the plasma potential cause a shape distortion of the tritium beta spectrum. Since
the probability for electrons to undergo inelastic scattering depends on the starting position z in
the source, such an inhomogeneity also means that on average scattered electrons have a different
starting potential than unscattered electrons [61]. This effect will be referred to as the “plasma”
uncertainty.

Magnetic Fields

The source magnetic field Bsrc and pinch magnetic field Bmax directly influence the transmission
function (see Equation 2.2.2) and implicitly the scattering probabilities and therefore the response
function. The magnetic field in the analyzing plane Bana also directly impacts the transmission
function [54]. Thus, the uncertainty on the values of these fields has to be considered.

Background Overdispersion

Apart from the expected Poissonian distributed background, the distribution can contain an ad-
ditional component adding to the overall background rate that is not described by a Poissonian
distribution [55], referred to as the “non-Poisson” background. This background contribution is
eliminated by the SAP setting described in 2.1.4.

Background Energy Slope

The background rate depends on the retarding potential qU , reffered to as “qU slope”. Even
though this dependency is rather weak, it is important to consider this effect at the endpoint of
the spectrum, where the count rate is low. This slope is determined from dedicated measurements
[62].
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Penning Induced Slope

Stored electrons in the Penning trap between the two spectrometers contribute to the background
rate via the creation of positive ions. This background increases until the Penning wipers empty
the trap every time the retarding potential is changed [56, 54]. This additional background is
reffered to as the “Penning slope”. As mentioned in 2.1.4, the PS is not operated anymore since
the end of the fourth measurement campaign, eliminating this effect.

Other Systematic Effects

Theoretical calculations of the FSD do not come with an uncertainty. While estimations for this
uncertainty can be made, the contribution is small [63]. It is also not implemented in Netrium (see
3.1.2) and therefore not further discussed in this thesis.

Systematic effects arising from the retarding potential dependence of the detector efficiency are
corrected, but they have a neglible impact on the neutrino mass and are therefore not considered
[64].

Fluctuations of the source activity are estimated to be small and thus neglected.
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Chapter 3

Analysis Strategy

3.1 Software

3.1.1 Fitrium

Fitrium is an analysis tool developed for the KATRIN experiment. It is written in C++ and
includes a model of the tritium beta spectrum and the experimental setup as well as applications
for Monte Carlo data generation and data fitting. When fitting data, the model evaluation and
subsequently the integration over the spectrum has to be repeated many times. For a detailed
description of Fitrium see [65].

3.1.2 Netrium

Due to many root searches and integrations in the evaluation of the model, the analysis with
Fitrium requires a lot of computational power and time. Furthermore, the SAP setting requires
14 model evaluations instead of one and the combination of measurement campaigns as well as
the inclusion of systematic uncertainties additionally scale up the computational power and time
required.

Because of this, a new analysis tool called Netrium has been developed, mainly in Python. It
uses a neural network to approximate the integral spectrum for a given set of input parameters.
Netrium has one input node for each parameter and one output node for each retarding energy
point in the spectrum. Between the input and output nodes are two hidden layers with 128 nodes
each. The structure of the neural network is sketched in Figure 3.1.

For the training of Netrium a set of input parameters, that are sampled according to uniform
and normal distributions with different standard deviations, is provided. From these input param-
eters several million integral spectra are calculated, which then serve as the training data. During
the training, the weights are optimized by minimizing the loss function

loss(w) =

〈(
Rtrue

i −Rpred
i (w)

⟨Rtrue
i ⟩

)2〉
, (3.1)

where w are the weights, Rtrue
i the true rates of each sample and Rpred

i (w) are the rates predicted
by Netrium. To better enable Netrium to learn the changes to the spectrum, the difference in true
and predicted rates is normalized to the sample mean of the true rates.

Since Netrium is used as a method to predict the spectrum for a set of given input parame-
ters, it does not “fit” data in the conventional way. For simplicity however, the prediction of the
spectrum will be reffered to as a fit hereafter.
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Chapter 3. Analysis Strategy

Figure 3.1: Sketched structure of Netrium. There is one input node for each parameter and
one output node for each retarding energy point in the spectrum. In between are two hidden
layers with 128 nodes each. Figure adapted from [54].

For a detailed description of Netrium as well as a look at the performence, see Chapter 7 of [54].

3.2 Statistical Methods

The most important methods of statistical data analysis used in the light sterile neutrino analysis
of data from the KATRIN experiment are briefly explained in this section.

3.2.1 Maximum Likelihood Analysis

The method of maximum likelihood is a technique to infere parameter values from a given set of
n measurements of a random variable x that is distributed according to some known probability
density function (p.d.f.) f(x;θ) with parameters θ = (θ1, ..., θm), of which at least one is unknown.
The likelihood function

L(θ) =
n∏

i=1

f(xi;θ) (3.2)

is maximized by the parameters θ̂ that best describe the measured data [66]. Since it is more numer-
ically stable to work with a sum instead of a product, and since most optimization algorithms are
design for minimization, instead of maximizing the likelihood function L, the “neg-log-likelihood”
function − log(L) is minimized [54]. If the p.d.f. f(x;θ) is a normal distribution, the minimization
of − log(L) is equivalent to a χ2 minimization [66], with

−2 log(L) = χ2. (3.3)

In the case of the KATRIN experiment, the measured random variable is the number of counts,
x = N and the parameters of interest are the squared neutrino mass m2

ν , the endpoint E0, the
normalization of the signal A and the background rate B: θ = (m2

ν , E0, A,B). The model predic-
tion µi is given by the expected count rate Γ derived in 2.2.3 and the measurement time ti spent
at the retarding energy qUi:

µi = Γ(qUi) · ti. (3.4)
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3.2. Statistical Methods

The probability to measure Ni counts at a retarding energy qUi given a model prediction µi(θ) is
described by a Poisson distribution,

f(Ni;µi) =
µNi
i · exp(−µi)

Ni!
. (3.5)

For a large number of counts Ni, the Poisson distribution approaches a normal distribtuion and a
χ2 minimization according to Equation 3.3 can be used. Finally, the neg-log-likelihood function to
infere the parameters θ from the measured counts N at retarding energies qU with measrement
times t is given by [54]

− log(L(θ;N , qU , t)) = −
∑
i=1

log(f(Ni;µi(θ; qUi, ti))). (3.6)

The value for −2 log(L) obtained from a fit can be used as a goodness-of-fit test. This will be
referred to as the χ2-value in the following, even when the fit is done with the method of maximum
likelihood, not a χ2 minimization.

To account for the systematic uncertainties described in 2.3, Netrium uses nuisance parameters.
These are included in the minimization of − log(L) as additional parameters θsyst. To include
the prior knowledge on these parameters, they are constrained by multiplying a pull-term to the
likelihood function. In the simplest case, this pull-term is a normal distribution with the best
estimate µsyst as the mean and the uncertainty σsyst as the standard deviation [54].

3.2.2 Grid Scan

To infer constraints on the light sterile neutrino parameters, a grid scan is performed over the
two-dimensional, logarithmic parameter space spanned by the active-to-sterile neutrino mixing
|Ue4|2 and the square of the light sterile neutrino mass m2

4 of size i × j. The index i corresponds

to the values for |Ue4|2 and the index j to the values for m2
4. Each point in the grid is fitted

with the corresponding sterile parameters fixed and the standard fit parameters from the neutrino
mass analysis, θ = (E0, A,B), with the squared neutrino mass set to zero, m2

ν = 0. For the null
hypothesis as well as each fit in the grid a χ2

ij is obtained and one can then find the best fit by

determining χ2
BF = min

(
χ2
ij

)
. The difference ∆χ2

ij = χ2
ij − χ2

BF is used to draw the contour at

∆χ2
ij = ∆χ2

crit, where ∆χ2
crit = 2.30 at 68.3%C.L. and ∆χ2

crit = 5.99 at 95%C.L. for two degrees
of freedom [66]. The applicability of Wilk’s theorem [67] has been shown in [68].

3.2.3 Raster Scan

The several systematic effects in the KATRIN experiment, as discussed in 2.3, need to be included
when studying the sensitivity of the experiment. In Netrium, the systematic effects are included as
nuisance parameters. Each grid scan is done by including one systematic uncertainty in addition
to the statistical uncertainty, except for the inclusion of all systmatic effects. To investigate the
impact of the individual systematic uncertainties for every data set, a raster scan is performed
on the grid scan data. Given a set of χ2

ij values for every point in the |Ue4|2 × m2
4 grid, the 1σ

uncertainty on |Ue4|2 is determined for a fixed value of m2
4 by finding ∆χ2

i = ∆χ2
crit. For one degree

of freedom, the 1σ uncertainty is given with ∆χ2 = 1 [66]. This value corresponds to σstat+syst

|Ue4|2

and the contribution from only the systematic uncertainty is then given by

σsyst

|Ue4|2
=

√(
σstat+syst

|Ue4|2

)2
−
(
σstat
|Ue4|2

)2
. (3.7)

This is then repeated for every value of m2
4.
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Chapter 3. Analysis Strategy

3.3 Data Combination

Real data measured by the KATRIN experiment is split up into measurement campaigns, which
are in turn split up into many individual runs. Furthermore, each of these runs is measured with
a multi-pixel detector and therefore the individual data sets have to be combined, which is briefly
discussed in this section.

3.3.1 Combination of Pixels

As described in 2.1.5, the FPD has 148 pixels arranged in a dartboard pattern. Each of these
pixels measures an independent spectrum and subsequently every pixel has an individual neg-log-
likelihood function. To reduce the amount of model evaluations, several pixels are combined into
patches by adding up the counts and averaging the measurement times [54]. For measurement
campaigns in the normal analyzing plane setting, all pixels are combined into one uniform patch,
while for campaigns in the SAP setting, the pixels are combined into 14 patches, as shown for the
case of the KNM-3a measurement campaign in Figure 3.2.

3.3.2 Combination of Runs

The spectrum is measured multiple times during a measurement campaign, resulting in many
individual runs. All individual spectra from these runs are combined into one spectrum by adding
up the counts as well as the measurement times and averaging the model parameters [54].

3.3.3 Combination of Measurement Campaigns

Parameters that are stable during one measurement campaign, e.g. the column density, are not
necessarily equal for different measurement campaigns and averaging of the parameters is not
possible. Therefore, the individual neg-log-likelihood functions of all measurement campaigns are
combined [54].
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Figure 3.2: The 14 patches used in the analysis of measurement campaigns in the SAP
setting, in this case KNM-3a. All pixels that have the same color belong to the same patch.
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Chapter 4

Netrium for the Light Sterile
Neutrino Analysis

As described in 3.1.2, Netrium vastly improves the computing time when analyzing data from the
tritium beta spectrum measurements of the KATRIN experiment and allows the combination of
multiple measurement campaigns. It is already successfully used in the neutrino mass analysis [54]
and for the reasons stated above the application in the light sterile neutrino analysis would be
beneficial. With the two additional sterile neutrino parameters |Ue4|2 and m2

4 and the therefore
extended parameter space, the applicability of Netrium has to be validated. The well established
software Fitrium (see 3.1.1) is used as a benchmark to compare the following results with Netrium:

1. Light sterile neutrino signal: can Netrium accurately predict the signature of a light sterile
neutrino in the spectrum?

2. Individual fits of the beta spectrum for different sterile parameters.

3. Sensitivity contours in the light sterile neutrino parameter space.

4.1 Light Sterile Neutrino Signal

The signature of a light sterile neutrino in the (3+1) ν framework in the data of the KATRIN exper-
iment is discussed in 1.4.1 and illustrated in Figure 1.3. To show that Netrium properly learns the
sterile parameters and subsequently models this signature accurately, two Monte-Carlo copy data
sets without statistical fluctuations, called Asimov data sets, are generated with Fitrium. Both are
generated based on the KNM-2 measurement campaign: one without a light sterile neutrino, called
the null hypothesis, and one with a light sterile neutrino with |Ue4|2 = 0.01 and m2

4 = (10 eV)2.
The two parameters for the light sterile neutrino are chosen such that the singature is clearly visible.

The effect of a light sterile neutrino on the spectrum is best visualized by taking the ratio of
the (3 + 1) ν to the 3 ν model, where the signature then shows as a characteristic “dip”-like struc-
ture in the ratio of the two spectral data sets. Both spectra can then be fitted with Fitrium and
with Netrium, and the ratio of the (3 + 1) ν model fit to the 3 ν model fit can be taken. This is
shown in the top of Figure 4.1. Note that the sterile parameters are not free fit parameters here,
but set to the same value as in the Asimov data. The ratio of the Fitrium fits as well as the ratio
of the Netrium fits both match the ratio of the data sets very accurately.

To further compare the Netrium and Fitrium results, the ratio of the signature from Netrium
and the signature from Fitrium, i.e. the ratio of the two ratios explained above, can be taken.
This is shown in the bottom of Figure 4.1. The comparison shows that their ratio deviates by less
than 2 · 10−4 from unity.
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Figure 4.1: Comparison of the light sterile neutrino signature in Netrium and Fitrium on
Asimov data with a light sterile neutrino signal (|Ue4|2 = 0.01 and m2

4 = (10 eV)2), and
without a light sterile neutrino signal. Top: Ratio of the (3 + 1) ν to the 3 ν model for the
data sets (black dots), the Fitrium fits (solid dark blue line) and the Netrium fits (dashed
light blue line). Bottom: Ratio of the light sterile neutrino signature from Netrium to the
signature from Fitrium, showing an excellent agreement between the two tools.

These results show that Netrium properly learns the light sterile neutrino parameters and predicts
the signature in the spectrum accurately, also in very good agreement with Fitrium.

4.2 Individual Fits

To further show that Netrium can accurately predict the beta spectrum measured by the KATRIN
experiment, the resulting fit and especially the deviance from the actual data can be investigated
and compared to that of the Fitrium fit. This is done for the null hypothesis and a fit with sterile
parameters, as it is done in a grid scan. The data used is again Asimov data generated with
Fitrium and based on the KNM-2 measurement campaign. Note that here the sterile parameters
are varied in the fit but the data is generated according to the null hypothesis, i.e. it contains no
sterile neutrino signal.

The Fitrium fit of the null hypothesis as well as the residuals from the data normalized to the
1σ statistical uncertainty for both the Fitrium fit and the Netrium fit is shown in Figure 4.2.
The normalized residuals of both fits are below 5 · 10−3 σ and thus in very good agreement with
the data. This is of course expected, as the parameters in the fit are the same as in the Asimov data.

The same but with sterile parameters from one point in the grid of a grid scan where the light
sterile neutrino would have a huge impact, at |Ue4|2 = 0.1192 and m2

4 = (9.8715 eV)2, is shown
in Figure 4.3. As expected, the fit deviates largely from the data since the sterile parameters do
not match the ones from the Asimov data. The magnitude and the structure of these residuals are
very similar for both Fitrium and Netrium.

Both these fits show that Netrium can accurately predict the spectrum for the null hypothesis
and that the normalized residuals are very similar to those of Fitrium.
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Figure 4.2: Fitrium and Netrium fit of the null hypothesis. Top: The data points in
dark blue with the 1σ statisitical uncertainties (mutliplied by 50 for better visibility) and
Fitrium fit in light blue. The Netrium fit is not shown, as it shows no visible deviation from
the Fitrium fit. Bottom: Residuals of the Fitrium and Netrium fit normalized to the 1σ
statistical uncertainty.
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Figure 4.3: Fitrium and Netrium fit with sterile parameters set to |Ue4|2 = 0.1192 and
m2

4 = (9.8715 eV)2. Note that here the sterile parameters are varied in the fit but the data is
generated according to the null hypothesis. Top: The data points in dark blue with the 1σ
statisitical uncertainties (mutliplied by 50 for better visibility) and Fitrium fit in light blue.
The Netrium fit is not shown, as it shows no visible deviation from the Fitrium fit. Bottom:
Residuals of the Fitrium Netrium fit normalized to the 1σ statistical uncertainty.
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Chapter 4. Netrium for the Light Sterile Neutrino Analysis

4.3 Sensitivity Contours

The final step in the validation is to compare the sensitivity contours from Netrium to the ones
from Fitrium. For this, a grid scan (as described in 3.2.2) only including the statsitical uncertainty
is done and the sensitivity contours on the parameter space of light sterile neutrinos from both
tools are then drawn at 95%C.L. and compared. This is done for one Asimov data set generated
with Fitrium, based on a measurement campaign with the normal analyzing plane setting and
one based on a measurement campaign with the SAP setting. The comparison is done for both
settings, since the patch-wise fit done for the data from SAP campaigns requires one model for
each patch and therefore also one neural network per patch. Thus, it has to be shown that Netrium
also works in the SAP setting. The intervals of the sterile parameters are |Ue4|2 ∈ [0.001, 0.5] and

m2
4 ∈ [1, 1600] eV2 with a grid size in |Ue4|2 × m2

4 of 40 × 30 for the comparison in the normal
setting and 20× 20 for the comparison in the SAP setting, because of the rather long computing
time of the Fitrium grid scan, especially when 14 model evaluations are needed for data from SAP
campaigns.

For the measurement campaign in the normal setting, Asimov data based on KNM-1 is used.
The resulting sensitivity contours from both Netrium and Fitrium are shown in Figure 4.4. Both
contours agree sufficiently well with each other.
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Figure 4.4: Comparison of Netrium and Fitrium sensitivity contours for Asimov data based
on KNM-1. The Fitrium and Netrium sensitivity contours are shown in dark blue and light
blue, respectively.
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Figure 4.5: Comparison of Netrium and Fitrium sensitivity contours for Asimov data based
on KNM-4. The Fitrium and Netrium sensitivity contours are shown in dark blue and light
blue, respectively.

The comparison in the SAP setting is done on Asimov data based on KNM-4, and the Netrium
and Fitrium sensitivity contours are shown in Figure 4.5. In this case, the contours do also not
deviate significantly from each other.

For both the normal and the SAP setting the sensitivity contours obtained from Netrium and
Fitrium grid scans agree well with each other, as can be seen in both comparisons.

It has been shown that Netrium can accurately predict the signature of a light sterile neutrino
in the spectrum measured by the KATRIN experiment and that the prediction agrees well with
the Fitrium fit. Further, the comparison of individual fits for the null hypothesis, as well as with
the sterile parameters corresponding to a grid point, of both tools has shown that Netrium per-
forms well in both cases. Lastly, also the sensitivity contours obtained from both tools match fine
for both the normal and the SAP setting. From these observations it is concluded that Netrium
can be applied in the light sterile neutrino analysis of the KATRIN experiment.
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Chapter 5

Pixel Combination for the Light
Sterile Neutrino Analysis

To reduce the background in the KATRIN experiment, the SAP setting, as discussed in 2.1.4, was
tested as part of the third measurement campaign and is used permanently since the beginning
of the fourth measurement campaign. A patch-wise analysis, where multiple pixels of the FPD
are combined into one patch, is required for measurement campaigns in this setting, to reduce the
impact of the increased spread of the electric potentials and magnetic fields [57]. Since the signal
of a light sterile neutrino is located further below the endpoint of the spectrum than the neutrino
mass signal, averaging the field values over a larger number of pixels might not have a large impact
on the sensitivity. Therefore, less patches could be sufficient for the light sterile neutrino analysis,
or patch-wise fitting might not be required at all.

For Fitrium, the tritium beta decay model has to be calculated individually for every patch and
for Netrium, every individual model and subsequently every patch requires a seperate neural net-
work that has to be trained. Therefore, a reduction of the number of patches would decrease the
computation time significantly for both tools, especially when performing a fine binned analysis in
the two-dimensional light sterile parameter space. In addition, patch configurations that contain
a large number of pixels could enable the usage of the covariance matrix method to include sys-
tematic uncertainties in the analysis, as the number of counts per retarding energy is increased,
allowing the use of a normal distribution.

To check the impact of an analysis with less patches on the sensitivity and subsequently the
necessity of a patch-wise fit, and further to investigate the optimal number of patches, a study on
the impact of different patches is performed with Fitrium on three Asimov data sets generated with
Fitrium and based on KNM-3a. The first dataset is generated according to the null hypothesis,
i.e. with no sterile neutrino signal, while the other two data sets are generated including sterile
neutrino signals with two different sterile parameter sets.

5.1 Pixel Combinations

For the study, the pixels of the FPD are grouped in four different ways, as shown for KNM-3a in
Figure 5.1:

• 14 patches: The standard patches used for the neutrino mass analysis of SAP campaigns (see
Figure 5.1a),

• Four pseudo-patches: Combination of patches [0, 2]; [3, 5]; [6, 9] and [10, 13] of the standard
patches (see Figure 5.1b),
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(a) 14 standard patches.
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(b) Four pseudo-patches.
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(c) Two pseudo-patches.
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Figure 5.1: The four different pixel combinations used for the study. All pixels that have
the same color belong to the same patch. Only the active pixels from KNM-3a are used.

• Two pseudo-patches: Combination of patches [0, 6] and [7, 13] of the standard patches (see
Figure 5.1c),

• Uniform: Combination of all patches (see Figure 5.1d).

The systematic effects caused by the rear wall signal and the Penning slope are given individually
for each of the 14 standard patches. To account for these in the other configurations, the rear wall
signal values are averaged with a weighted mean and the Penning slope is summed up, each for
the corresponding patches that are combined.

5.2 Impact of the Pixel Combination for the Null Hypoth-
esis

For the null hypothesis data set, a grid scan (see 3.2.2) is performed with each of the four patches

with sterile parameters of |Ue4|2 ∈ [0.001, 0.5] and m2
4 ∈ [1, 1600] eV2 on a 20 × 20 grid, only

considering statistical uncertainties. The resulting sensitivity contours at 95%C.L. are shown in
Figure 5.2.

Only the uniform sensitivity contour differs visibly from the patch-wise ones. The contours for

32
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Figure 5.2: Impact of the different patch combinations on the sensitivity contours at
95%C.L. for the null hypothesis.

the two pseudo-patches and four pseudo-patches are hardly distinguishable from the standard case
using 14 patches. In the case of the null hypothesis, the two pseudo-patches would therefore already
be sufficient

5.3 Impact of the Pixel Combination with a Sterile Neu-
trino Signal

To investigate the impact of the different patches on data containing a light sterile neutrino sig-
nal, two Asimov data sets are generated. For the first data set, the parameters |Ue4|2 = 0.1 and
m2

4 = 30 eV2 are chosen, since the different sensitivity contours obtained from the null hypothesis
grid scan deviate the most at this point in the parameter space (see Figure 5.2). The second data

set is generated with sterile parameters of |Ue4|2 = 0.02 andm2
4 = 200 eV2, a point in the grid where

the sensitivity contours do not deviate very much from each other. With this selection the minimal
and maximal impact of the different patch configurations can be estimated. Like for the null hy-
pothesis data set, a grid scan with sterile parameters of |Ue4|2 ∈ [0.001, 0.5] and m2

4 ∈ [1, 1600] eV2

on a 20 × 20 grid with only the statistical uncertainty is performed for both datasets. First, a
confidence level of 95% is chosen and then the contours are also drawn at 68.3%C.L., as the lower
confidence level allows the examination of how the different patch combinations impact contours
that are closed around a potential light sterile neutrino signal.

The sensitivity contours from the grid scan performed on the first data set are shown at 95%C.L.
in Figure 5.3 and at 68.3%C.L. in Figure 5.4. At 95%C.L., only the sensitivity contour for all 14
patches and for the four pseudo-patches starts to close around the grid point of the signal. For
the same signal at 68.3%C.L., all contours are closed around the grid point of the signal. The
uniform contour is further from the signal than the other contours in all of the points, the two-
pseudo-patch contour shows only slight deviations from the contour with all 14 patches, while the
four-pseudo-patch contour is basically identical with the 14-patch contour.
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Figure 5.3: Impact of the different patches on the sensitivity contours at 95%C.L. for a
simulated sterile neutrino signal with |Ue4|2 = 0.1 and m2

4 = 30 eV2. The simulated sterile
neutrino signal is marked by the black cross.
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Figure 5.4: Impact of the different patches on the sensitivity contours at 68.3%C.L. for a
simulated sterile neutrino signal with |Ue4|2 = 0.1 and m2

4 = 30 eV2. The simulated sterile
neutrino signal is marked by the black cross.

34



5.3. Impact of the Pixel Combination with a Sterile Neutrino Signal

10−3 10−2 10−1

|Ue4|2
100

101

102

103

m
2 4

(e
V

2
)

Sterile neutrino

14 patches

4 patches

2 patches

Uniform

Figure 5.5: Impact of the different patches on the sensitivity contours at 95%C.L. for a
simulated sterile neutrino signal with |Ue4|2 = 0.02 and m2

4 = 200 eV2. The simulated sterile
neutrino signal is marked by the black cross.

The same is done for the second data set with sterile parameters where the sensitivity contours do
not deviate very much from each other. Again, this is done for both 95%C.L. and 68.3%C.L., and
the resulting sensitivity contours are shown in Figure 5.5 and Figure 5.6, respectively. At 95%
C.L., all but the uniform contour start to close around the grid point of the signal. At 68.3%C.L.
the contours of all patches are closed around the signal, while they show the same behaviour as
for the (0.1, 30 eV2) sterile neutrino signal: the uniform contour is further from the signal than the
other contours, the two-pseudo-patch contour shows only slight deviations from the contour with
all 14 patches and the four-pseudo-patch contour is basically identical with the 14-patch contour.

From these results it can be concluded that an optimal choice for the patch configuration in
the light sterile neutrino analysis of SAP campaigns would be the four pseudo-patches. With this
configuration, the parameter space is reduced by a factor of 3.5, while the resulting sensitivity con-
tours are almost identical with the 14-patch contours for all cases except the (0.1, 30 eV2) sterile
neutrino signal. For this signal the four-patch contour still starts to close around the signal.

Since the standard systematic contributions are provided for the 14 standard patches, as used
in the neutrino mass analysis, a seperate calculation would be needed for each new paseudo-patch
configuration. Therefore, the standard 14-patch configuration is used in this thesis. For future
analyses the patch number could be reduced, given that the pseudo-patch-wise systematic inputs
are provided.
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Figure 5.6: Impact of the different patches on the sensitivity contours at 68.3%C.L. for a
simulated sterile neutrino signal with |Ue4|2 = 0.02 and m2

4 = 200 eV2. The simulated sterile
neutrino signal is marked by the black cross.
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Chapter 6

Sensitivity of the First Five
Measurement Campaigns

The KATRIN experiment is taking data for the neutrino mass analysis since 2019 with five mea-
surement campaigns that have undergone quality control. Data from these measurement campaigns
can also be used to search for light sterile neutrinos. In Chapter 4, the applicability of Netrium was
validated and it is now used for a sensitivity study of the first five measurement campaigns. Since
Netrium enables the combination of multiple measurement campaigns, the combined sensitivity of
all campaigns is studied. Furthermore, the impact of systematic uncertainties on the sensitivity
is investigated and the combined sensitivity of all measurement campaigns is compared to results
from other experiments that are sensitive to light sterile neutrinos. Lastly, the statistics-only sen-
sitivites for different fit ranges are analyzed. The data used for the study are Asimov data sets
generated with Fitrium, one for each of the measurement campaigns. As in the neutrino mass
analysis, KNM-3a and KNM-3b are considered as seperate data sets here.

6.1 Individual and Combined Sensitivity

The sensitvity on the light sterile neutrino parameter space is obtained from a grid scan (see 3.2.2)

with sterile parameters of |Ue4|2 ∈ [0.001, 0.5] and m2
4 ∈ [1, 1600] eV2 with a grid size of 50 × 50.

Using Netrium, the analysis can be peformed seperately for each individual measurement campaign
as well as the combination of all campaigns.

First, the grid scans are calculated including only the statistical uncertainty for all individual
as well as combined measurement campaigns. The resulting sensitivity contours at 95%C.L. are
shown in Figure 6.1. While KNM-1, KNM-3a and KNM-3b are very similiar, the sensitivity in-
creases with KNM-2, KNM-4 and KNM-5. Of course, the sensitivity is strongly correlated with the
number of electrons measured in the 40 eV fit range, which is shown in Table 6.1. By combining
all measurement campaigns, a large increase in sensitivity is gained.

Campaign KNM-1 KNM-2 KNM-3a KNM-3b KNM-4 KNM-5 Combined
Number of electrons in
40 eV fit range (106)

2.0 4.3 1.1 1.4 10.2 16.8 35.8

Number of electrons in
60 eV fit range (106)

3.5 8.3 2.0 2.8 19.5 35.8 71.9

Number of electrons in
90 eV fit range (106)

10.1 33.3 7.7 11.0 213.8 290.4 566.3

Table 6.1: Number of electrons in different fit ranges for all measurement campaigns and
the combination of all campaigns.
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Figure 6.1: Sensitivity contours for all individual measurement campaigns and the combi-
nation of all measurement campaigns including only the statistical uncertainty.

For the actual sensitivity, all the uncertainties caused by the various systematic effects have to be
included. Again, grid scans are performed on the same Asimov data as above, but now including all
systematic uncertainties in all measurement campaigns as well as the combination of all campaigns.
This slightly decreases the sensitivity of all individual measurement campaigns and the combination
of all campaigns, as shown in Figure 6.2. The impact on the sensitivity contours is rather small,
however not negligible.
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Figure 6.2: Sensitivity contours for all individual measurement campaigns and the combi-
nation of all measurement campaigns including all systematic uncertainties.
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6.2 Systematic Uncertainties

The sensitivites of individual measurement campaigns including only statistical uncertainties as
well as with the addition of all systematic uncertainties have been shown in the preceding section.
Now, the impact of every individual systematic uncertainty is investigated. For this, one grid
scan is performed for each systematic effect, including the systematic uncertainty of this effect in
addition to the statistical uncertainty. Like before, the grid scans (see 3.2.2) are performed with

sterile parameters of |Ue4|2 ∈ [0.001, 0.5] and m2
4 ∈ [1, 1600] eV2 with a grid size of 50 × 50. To

investigate the contribution of only the individual systematic effects, a raster scan, as described in
3.2.3, is performed with the fit results obtained from these grid scans. The result shows the 1σ
uncertainty on the active-to-sterile mixing |Ue4|2 for every sterile mass m2

4. Since in the KNM-3b
measurement campaign all of the possible systematic effects are present, the results of the raster
scan are shown for this measurement campaign in Figure 6.3. Another way to examine the impact
of the individual systematic uncertainties is to study the impact on |Ue4|2 for individual masses.
This is done for values ofm2

4 in the grid which are close to the powers of ten and shown in Figure 6.4.

For comparison, also the results of the raster scan for KNM-5 are shown in Figure 6.5, where
the uncertainty from the non-Poissonian background and the Penning slope are eliminated (see
2.3). Furthermore, the systematic uncertainties have more impact in KNM-5, due to the increased
statistical precision. Analogous to KNM-3b before, the impact of the systematic uncertainties for
individual values of m2

4 is also shown for KNM-5 in Figure 6.6. The raster scan results as well as
the impact for different values of m2

4 of all other measurement campaigns are shown in Appendix
A.
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Figure 6.3: Impact of individual systematic uncertainties on |Ue4|2 in KNM-3b obtained
from a raster scan.
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Chapter 6. Sensitivity of the First Five Measurement Campaigns

For KNM-3b, the total systematic uncertainty is dominated by the non-Poissonian background
and the background from the Penning slope up to about 600 eV2. From then on, the column
density uncertainty has the largest impact. The impact of the qU slope is rather strong for small
masses and decreases for higher masses, since this slope becomes less prominent when the satistics
increase deeper into the beta spectrum. The impact of the uncertainty on the magnetic fields in
the analyzing plane and the plasma uncertainty are rather similar. Much less impact on the total
systematic uncertainty comes from the uncertainties on the energy loss function as well as the
pinch and source magnetic fields. Overall, the rear wall uncertainty has the least impact.

10−5 10−4 10−3 10−2 10−1

σ|Ue4|2

Rear wall

Source field

Pinch field

Energy loss

Plasma

AP fields

qU slope

Column density

Penning slope

Non-poisson

Total syst.

Stat. only

m2
4 = 1.16 eV2

m2
4 = 11.12 eV2

m2
4 = 106.44 eV2

m2
4 = 1018.47 eV2

Figure 6.4: Impact of individual systematic uncertainties for different values of m2
4 in KNM-

3b obtained from a raster scan.
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Figure 6.5: Impact of individual systematic uncertainties on |Ue4|2 in KNM-5 obtained from
a raster scan.

In KNM-5, the two dominant causes for systematic uncertainties, namely the non-Poissonian back-
ground and the background from the Penning slope, are eliminated. Thus, the total systematic
uncertainty is strongly dominated by the column density uncertainty, followed by the plasma un-
certainty. The qU slope shows a similar behaviour as in KNM-3b, although the impact for lower
masses is much less, due to the large increase in statistics from KNM-3b to KNM-5. Like for
KNM-3b, the impact of the uncertainty on the energy loss function as well as the pinch and source
magnetic fields are rather similar. Again, the rear wall uncertainty has a small overall impact but
not the lowest, which comes from the uncertainty on the SAP fields, because the measurement
precision of these magnetic fields was improved between KNM-3b and KNM-5. Although the mag-
nitude of the systematic uncertainties depends on the light sterile neutrino mass, their general
ordering is very similar to the systematic uncertainties on m2

ν from the neutrino mass analyis of
the corresponding measurement camapigns [69].

Something that is apparent when looking at the results from the raster scans in Figure 6.3 and
Figure 6.5 is that in the mass region of about (30 − 80) eV2, the lines describing the impact on

|Ue4|2 are drawn towards lower values. This behaviour can also be observed for all other raster
scans (see Appendix A). A possible explanation is that the measurement time is very long at this
corresponding retarding energy range and the impact of sytematic uncertainties is therefore re-
duced, if they depend on the measurement time. In some cases, e.g. KNM-3b, the contours also
have a gap in this mass region, which is the case for masses where the contribution from only the
systematic uncertainty (see Equation 3.7) is undefined because the expression in the root becomes
negative, i.e. the contribution from the statistical uncertainty is larger than the contribution from
the statistical and systematic uncertainty combined. This happens for masses where both contri-
butions are very small and very similar, and it could therefore just be a numerical issue. The exact
cause for this behaviour is under investigation.
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Figure 6.6: Impact of individual systematic uncertainties for different values of m2
4 in KNM-

5 obtained from a raster scan.
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6.3 Comparison with Other Experiments

The sensitivity of the first five measurement campaigns of the KATRIN experiment on the light
sterile neutrino parameter space obtained with Netrium can now be compared to the results of
short-baseline electron (anti-)neutrino disappearence experiments and especially the parameter
space of current anomalies, as discussed in 1.4.2. Thus, a grid scan with sterile parameters of
|Ue4|2 ∈ [0.001, 0.5] and m2

4 ∈ [0.1, 1600] eV2 and a grid size of 150×150 is done, with the inclusion
of all systematic uncertainties. For comparison, the same grid scan is also done only including the
statistical uncertainty. In difference to the grid scans performed before, the lower boundary for m2

4

is extended from 1 eV to 0.1 eV to be able to also include the parameter space up to the maximal
value for |Ue4|2. Furthermore, the grid size is increased to get a smoother contour. As discussed
in 1.4.1, with ∆m2

41 ≈ m2
4 (since m4 ≫ mi) and Equation 1.27, the resulting sensitivity can be

compared to short-baseline electron (anti-)neutrino disappearence experiments, which is shown in
Figure 6.7.
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Figure 6.7: The current parameter space of light sterile neutrinos with restrictions from
various experiments. For the BEST+GA, RAA and Neutrino-4 experiment the allowed part of
the parameter space according to their respective results is shown. For the other experiments,
the excluded part of the parameter space not allowed from their results is shown shaded. The
parts of the parameter space allowed by the BEST+GA and RAA are in tension as they have
no real overlap. The PROSPECT and STEREO experiments exclude the claimed observation
of Neutrino-4. Also shown are the Mainz and Troitsk experiments, the predecessors of the
KATRIN experiment. The sensitivity of the first five measurement campaigns of the KATRIN
experiment only including the statistical uncertainty is shown by the black dashed line and the
actual sensitivity with the inclusion of all sytematic uncertainties is shown in dark blue. With
this sensitivity, a majority of the BEST+GA parameter space could potentially be probed,
especially the part currently not excluded by other experiments.
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The combined sensitivity shows that with the first five measurement campaigns of the KATRIN
experiment a large part of the BEST+GA parameter space as well as the currently unexcluded
region, as indicated in Figure 1.4 by the shaded red area, could be probed. Furthermore, almost all
of the parameter space from the claimed observation of the Neutrino-4 experiment could potentially
be excluded, in addition to the results of the PROSPECT and STEREO experiments.

6.4 Extended Fit Range

For all the studies presented up to now, the same standard fit range as in the neutrino mass analysis
of 40 eV below the endpoint was used. An increase of this range could be beneficial for the sensi-
tivity in the light sterile neutrino analysis because of vastly increased statistics due to the amount
of electrons measured in a wider fit range, which can be seen in Table 6.1 for the standard 40 eV
fit range, as well as two extended fit ranges of 60 eV and 90 eV. This therefore allows to search for
an extended set of sterile neutrino masses. The 90 eV fit range is chosen since this is the largest fit
range available with the current data from the KATRIN experiment, and the 60 eV range is chosen
as a median step between the standard and maximum fit range. To examine the benefits of this
extension of the fit range, two additional grid scans in the 60 eV and 90 eV range are performed
on all combined data sets, with m2

ν = 0 eV2 and only including statistical uncertainties. While the

range of the active-to-sterile mixing is |Ue4|2 ∈ [0.001, 0.5] for the grid scans of all fit ranges, the
range of the squared mass is m2

4 ∈ [0.1, 1600] eV2 for the 40 eV range, m2
4 ∈ [0.1, 3600] eV2 for the

60 eV range and m2
4 ∈ [0.1, 8100] eV2 for the 90 eV range. For the extended fit ranges also the grid

size in |Ue4|2 ×m2
4 is increased from 50× 50 for the standard 40 eV range to 50× 100 for the 60 eV

range and 50 × 150 for the 90 eV range, to still obtain smooth contours from a larger grid. The
sensitivity contours at 95%C.L. resulting from these three grid scans are shown in Figure 6.8.

As expected, for extended fit ranges the sensitivity contours cover much more of the parame-
ter space in the larger mass region. But also the sensitivity on the active-to-sterile mixing in the
lower mass region increases significantly with the extended range, improving the ability to probe
the parameter space of the light sterile neutrino anomalies discussed in 1.4.2. Further investigation,
regarding the inclusion of systematic uncertainties and the structure of the sensitivity contours at
larger masses is required.
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Figure 6.8: Comparison of the sensitivity contours with the normal 40 eV and the extended
60 eV and 90 eV fit range obtained from statistics only grid scans.
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Chapter 7

Conclusion

In this thesis, several studies concerning the light sterile neutrino analysis of the KATRIN exper-
iment have been performed. For the standard neutrino mass analysis, the 148 detector pixels are
combined into 14 patches and the data is further divided into multiple measurement campaigns.
This makes the analysis computationally challenging, since every data set s described by its own
model. Therefore, a neural network called Netrium has been developed for the neutrino mass
analysis.

Netrium was adapted for the light sterile neutrino analysis with the two additional sterile neu-
trino parameters |Ue4|2 and m2

4. Subsequently, this was validated by comparing various reults
from the well established analysis tool Fitrium to Netrium. First, the signature of a simulated
sterile neutrino in the data was fitted with both tools and compared, which showed that Netrium
can predict the signature of a light sterile neutrino in the spectrum accurately. Next, individual
fits were performed with both tools for different sterile neutrino parameters and compared. The
results show that the Netrium fit works well, also in comaprison to the Fitrium fits. After that
also the sensitivity contours obtained from both Fitrium and Netrium grid scans were compared,
which agree well with each other. From these observations it was concluded that Netrium can be
applied in the light sterile neutrino analysis.

A lower amount of patches would, among other advantages, significantly decrease the compu-
tational effort required in the light sterile neutrino analysis. Therefore, it was investigated how
much a decrease of patches affects the statistics-only sensitivity of the KATRIN experiment on
the parameter space of light sterile neutrinos. For this, four different patch configurations were
considered for a study on Asimov data. To this end, the sensitivity contours for different patches
from a grid scan on a data set containing no light sterile neutrino signal are compared. It is found
that only the sensitivity contour from a uniform patch differs visibly from the patch-wise ones.
The same was repeated for the sensitivity contours from grid scans performed on two data sets
that contain a light sterile neutrino signal. The results have shown that in most cases the sensi-
tivity contours from four pseudo-patches are very similar to the ones from the standard case of 14
patches. All in all the four pseudo-patches could be sufficient for the light sterile neutrino analysis,
reducing the parameter space by a factor of 3.5. To apply this however, the pseudo-patch-wise
systematic inputs would have to be provided, as these were just averaged for this study.

Finally, Netrium is used for a sensitivity study on the data of the first five measurement cam-
paigns. First, the sensitivities of individual measurement campaigns were compared to each other
and the combined sensitivity of all campaigns. As expected, a huge increase in sensitivity is gained
by combining the data sets. The impact of individual systematic uncertainties was then investi-
gated for all measurement campaigns by doing a raster scan and shown as an example for KNM-3b
and KNM-5. The general ordering of the effects is very similar to the systematic uncertainties on
m2

ν from the neutrino mass analyis of the corresponding measurement camapigns. For a certain
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Chapter 7. Conclusion

mass region it was observed that the systematic uncertainty on |Ue4|2 is drawn towards lower val-
ues, which requires further investigation. The sensitivity from the combination of all measurement
campaigns was then compared to the current parameter space of light sterile neutrinos, showing
that important parts of the light sterile neutrino parameter space could be excluded with the
data from the first five measurement campaigns. These include the part of the gallium anomaly
currently not excluded by oscillation experiments as well as almost all of the parameter space
corresponding to the claimed observation of the Neutrino-4 experiment. Lastly, the statistics-only
sensitivity from the standard fit range and two extended fit ranges were compared. As expected,
for extended fit ranges the sensitivity contours cover much more of the parameter space in the
larger mass region. But also the sensitivity on the active-to-sterile mixing in the lower mass region
increases significantly with the extended range. An extended fit range could be used for future
analyses.
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Appendix A

Systematic Uncertainties of All
Measurement Campaigns
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Figure A.1: Impact of individual systematic uncertainties in KNM-1 obtained from a raster
scan.
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Figure A.2: Impact of individual systematic uncertainties for different values of m2
4 in KNM-

1 obtained from a raster scan.

50



Appendix A. Systematic Uncertainties of All Measurement Campaigns

10−6 10−5 10−4 10−3 10−2 10−1

σ|Ue4|2

100

101

102

103
m

2 4
(e

V
2
)

Stat. only

Total syst.

Non-poisson

Penning slope

Column density

qU slope

AP fields

Plasma

Pinch field

Energy loss

Source field

Figure A.3: Impact of individual systematic uncertainties in KNM-2 obtained from a raster
scan.
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Figure A.5: Impact of individual systematic uncertainties in KNM-3a obtained from a raster
scan. The structures visible for masses of about (5− 20) eV2 require further investigation.
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Figure A.6: Impact of individual systematic uncertainties for different values of m2
4 in KNM-

3a obtained from a raster scan.

54



Appendix A. Systematic Uncertainties of All Measurement Campaigns

10−5 10−4 10−3 10−2 10−1

σ|Ue4|2

100

101

102

103
m

2 4
(e

V
2
)

Stat. only

Total syst.

Penning slope

Column density

Plasma

qU slope

SAP fields

Pinch field

Energy loss

Source field

Rear wall

Figure A.7: Impact of individual systematic uncertainties in KNM-4 obtained from a raster
scan.
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List of Acronyms

SM standard model of particle physics

PMNS Pontecorvo-Maki-Nakagawa-Sakata

RAA reactor anti-neutrino anomaly

KI National Research Centre Kurchatov Institute

GA gallium anomaly

BEST Baksan Experiment on Sterile Transitions

KATRIN Karlsruhe Tritium Neutrino experiment

TLK Tritium Laboratory Karlsruhe

RS rear section

WGTS windowless gaseous tritium source

DPS differential pumping section

CPS cryogenic pumping section

PS pre-spectrometer

MS main spectrometer

FPD focal plane detector

RW rear wall
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List of Acronyms

e-gun electron gun

TMPs turbo-molecular pumps

MAC-E filter magnetic adiabatic collimation - electrostatic filter

SAP shifted analyzing plane

FSD final state distribution

BED binary-encounter-dipole model

p.d.f. probability density function
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terstützung bedanken, welche das Studium und damit diese Arbeit überhaupt erst ermöglicht
haben.


	Neutrino Physics
	Postulation and Discovery
	Neutrino Oscillations
	Neutrino Mass Determination
	Cosmology
	Neutrinoless Double Beta Decay
	Kinematics of Beta Decay

	Light Sterile Neutrinos
	Search for Light Sterile Neutrinos
	Light Sterile Neutrino Anomalies


	The KATRIN Experiment
	Experimental Setup
	Rear Section
	Windowless Gaseous Tritium Source
	Transport Section
	Spectrometer Section
	Focal Plane Detector

	Model of the Spectrum
	Differential Energy Spectrum of Molecular Tritium Decay
	Response Function
	Integral Spectrum and Expected Count Rate

	Systematic Effects

	Analysis Strategy
	Software
	Fitrium
	Netrium

	Statistical Methods
	Maximum Likelihood Analysis
	Grid Scan
	Raster Scan

	Data Combination
	Combination of Pixels
	Combination of Runs
	Combination of Measurement Campaigns


	Netrium for the Light Sterile Neutrino Analysis
	Light Sterile Neutrino Signal
	Individual Fits
	Sensitivity Contours

	Pixel Combination for the Light Sterile Neutrino Analysis
	Pixel Combinations
	Impact of the Pixel Combination for the Null Hypothesis
	Impact of the Pixel Combination with a Sterile Neutrino Signal

	Sensitivity of the First Five Measurement Campaigns
	Individual and Combined Sensitivity
	Systematic Uncertainties
	Comparison with Other Experiments
	Extended Fit Range

	Conclusion
	Systematic Uncertainties of All Measurement Campaigns
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	Acknowledgements

