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Abstract

In the search for dark matter, there arose many theoretical models over the course
of the past centuries. One of those models includes the existence of a right-handed
partner to the neutrino, the so called sterile neutrino. Its main property is, that it
nearly doesn’t interact with the active neutrino flavours or other Standard Model
particles. There are many hypothesises, in which range the mass of such a sterile
neutrino could be. With beta decay experiments like the KATRIN experiment,
it could be possible, to detect the signature of a sterile neutrino in the energy
spectrum of the electron. Since the KATRIN experiment is using molecular tritium,
one tritium atom decays into a 3He atom, whereas the other one remains. The new
molecule, that arises, contains an orbital electron, whose eigenstates and eigenvalues
change due to the decay. The energy of the orbital electron has a slight impact on the
energy of the escaping beta electron and thus has to be respected. After the decay,
the orbital electron can be in many excited states, each with a certain probability.
The probability distribution of an orbital electron to end up in a certain excited state
after the decay is called the Final States Distribution (FSD). The FSD has so far
been calculated corresponding to beta electrons with an energy of 18.6 keV, allowing
a more detailled analysis of the decay spectrum in the measurement of the neutrino
mass. In order to look for a sterile neutrino with a keV mass, whose impact on the
spectrum is far below the endpoint energy, the FSD needs to be known for different
energies of the beta electron. The aim of this work is to develop a simplified model
for this so called energy-dependent Final State Distribution. In the first chapter a
short introduction to the physics of neutrinos and sterile neutrinos is given. In the
second chapter, the experimental setup of the KATRIN experiment is described as
well as the TRISTAN project, whose goal it is to redesign KATRIN in way, that
it will be able to detect sterile neutrinos. In the third chapter, an introduction
calculation of the FSD is given, followed by the development of a simplified model
for the energy dependence of the groundstate FSD and of the first five excited states.
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Chapter 1

Theory of Neutrinos and sterile
neutrinos

Our understanding of neutrinos and the underlying physics has changed over the
past few decades, still some of its most fundamental properties like the mass re-
main unknown. Another question that pops up when working on neutrinos is the
existence of a right-handed partner. Understanding those properties is essential on
the way to get a feeling for the origin of particle masses as well as for the role of
primordial neutrinos and there influence on the evolution of large scale structures in
the universe. A discovery of the right-handed partner of the neutrino with a mass
in an keV range could unlock the secret nature of dark matter. This chapter shall
give a short introduction to the theory of neutrinos and sterile neutrinos which will
be a motivation for the following work. First, the history of the neutrino will be
explained, going on to the theory of neutrino oscillations and their relation to a
non-zero neutrino mass. The correlation between determining the mass of the neu-
trino and β decay experiments will be explained. After that, the concept of sterile
neutrinos, which are the right-handed partners of the neutrinos, will be described.
Their role as a possible dark matter candidate and their correlation to the β decay
energy spectrum will be explained.
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1.1 History of neutrino physics

The first time, the idea of the neutrino was postulated was in the year 1930 by
Wolfgang Pauli [13]. Trying to describe the continous energy spectrum of the elec-
tron in a β decay process, he assumed the existence of a new particle, which he then
called a neutron. In his hypothesis, this particle was staying in the nucles, having no
electrical charge and a spin 1

2
. As two years later the ”real” neutron was discoverd

by Chadwick, being a neutral particle with a mass just slightly higher than the
proton’s mass, Pauli changed the name of his particle to neutrino. Shortly after the
discovery of the neutron, Fermi formulated the first quantum theoretical theory of
β decays [14]. In this model, a massive neutral particle, being the neutron, decays
into a proton, an electron and into a neutral, massless particle, called the neutrino
ν, or to be more precise, into an anti-electron neutrino ν̄e.

n→ p+ e+ ν̄e (1.1)

In 1956, Cowan [15] discovered the existence of the inverse β decay.

p+ ν̄e → n+ e+ (1.2)

In this process a proton and an anti-electron neutrino decay into a positron and a
neutron. After the detection of a muon flavoured neutrino in 1962, the idea came
up, that neutrinos, similarly to the leptons, occur in different flavours. The last
neutrino flavour, called a tauon neutrino, was only discovered 20 years later, after
remaining theoretical for a long time.

1.2 Neutrino oscillations

Neutrino oscillations were first predicted bei B. Pontecorvo [16]. The first experi-
mental evidence was given about ten years later by experiments such as Homestake,
SNO and Kamiokande. In the Homestake experiment the flux of solar electron
neutrinos was measured. A high deficit of high energy neutrinos compared to the
solar neutrino model was detected, often recalled as the solar neutrino problem.
The solution to that are the socalled neutrino oscillations. In this model, a neu-
trino of flavour x can turn with a certain probability into a neutrino with flavour y.
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Mathematically, neutrino oscillations are explained using the PNMS (Pontecorvo-
Magi-Nakagawa-Sakata) matrix Uli:

νl =
3∑
i=1

Uliνi (1.3)

with the index l indicating the flavour eigenstates of the neutrino (e,µ, τ) and i
indicating the mass eigenstates. The equation in a written out form looks like:νeνµ
ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3


In a simplified model of neutrino oscillations with only two flavour and mass eigen-
states, the probability of a x flavoured neutrino oscillating into a y flavoured one
would be:

P (νx → νy) = sin2(2θ) · sin2

(
1.27 ·∆m2

xy/eV
2 L/km

Eν/GeV

)
(1.4)

Eν denotes the energy of the neutrino, ∆m2
xy = m2

x − m2
y is the difference of the

squared mass corresponding to the mass eigenstates and L is the distance the neu-
trino traveled. The variable θ stands for the mixing angle between the flavour
eigenstates. Since the oscillation probability is dependent on the squared mass dif-
ference, one can deduce, that neutrino oscillations imply a non-zero mass of this
particle.
Determining the neutrino mass is an aim of many experiments in the area of ex-
perimental neutrino research. Such experiments are divided into the kinematics of
the escaping electron in β decay, half-life measurements in the neutrinoless double
β decay (0νββ) and cosmological observations. Analyzing the energy spectrum of
the electron in an nuclear β decay would directly yield the neutrino mass as an
observable whereas other approaches like the cosmological observations indirectly
measure the sum of all neutrino mass eigenstates and depend strongly on the used
cosmological model.
In β decay, a neutron decays into a proton, emitting a W− boson, which then
decays into an electron and an anti-electron neutrino. The derivation of the differ-
ential spectrum of the tritium beta decay will be now explained shortly following
[17]. Using Fermis Golden Rule, the decay rate is given by

Γ = 2π
∑∫

|M |2 df (1.5)
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with M being the transition matrix element and
∑∫

df representing the sum (inte-
gral) over all possible discrete (continous) final states f. First focus on the term df .
Let dn be the number of different final states of outgoing particles inside a volume
V into the solid angle dΩ with momentum [p, p+ dp]. One then can write

dn =
V d3~p

h3
=
V p2dpdΩ

h3
(1.6)

Using the relation E2
tot = m2 +p2 which implies pdp = EtotdEtot, this expression can

be written as:

dn =
V pEtotdEtotdΩ

(2π)3
(1.7)

The density of states in a certain energy interval and solid angle becomes:

dn

dEtotdΩ
=
V pEtot
(2π)3

(1.8)

Since the mass of the daughter nucleus is much higher than the energies of the two
emitted leptons, it is a valid assumption to say that the nucles does not have any
kinetic energy at all. The density of states for the electron and the neutrino becomes

ρ(Ee, EνdΩe, dΩν) =
V 2
√
E2
e −m2

eEe
√
E2
ν −m2

νEν
(2π)6

(1.9)

Let’s now focus on the matrix element M. This can be divided into a leptonic and
a nuclear part:

M = GF cosθCMlepMnuc (1.10)

with θC denoting the Cabibbo angle. Since the decay of tritium is either a allowed or
superallowed transition, means a decay in which none of the leptons has any angular
momentum and both are treated as plane waves, the leptonic matrix elemenent
becomes:

|Mlep |2=
1

V 2
F (E,Z ′) (1.11)

F (E,Z ′) is denoting the Fermi function, which describes the Coulomb interaction
of the beta electron and the daughter nucleus having an atomic number Z’. In an
allowed or superallowed transition the nuclear matrix element is not dependent on
the energy of the escaping electron. It can thus be divided into a Fermi part (with
the nuclear spin difference being zero) and a Gamov-Teller part (with a nuclear spin
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difference being either zero or ±1). What remains, is an angular correlation of the
two outgoing leptons. The directions of the leptons are connected to each other via
the factor:

1 + a(~βe · ~βν) (1.12)

with βi = vi/c and a being 1 for pure Fermi transitions and -1/3 for pure Gamov-
Teller transitions according to [18]. With this knowledge it is possible to compute
the partial decay rate Γ0 with P0 being the probability of this very decay channel:

Γ0 = 2πP0

∫
Ee,Eν ,Ωe,Ων

| GF cosθCMlepMnuc |2 dnednν = (1.13)

P0

(2π)5

∫
Ee,Eν ,Ωe,Ων

G2
F cos

2θCF (E,Z ′) |Mnuc |2 · (1.14)√
E2
e −m2

eEe
√
E2
ν −m2

νEν(1 + a~βe~βν)· (1.15)

δ(Q− (Ee −me)− Eν − Erec)dEedΩedEνdΩν (1.16)

Q stands for the energy released in the decay process. This energy is, according to
the δ function, distributed into the kinetic energy of the electron, the total energy
of the neutrino and the recoil energy of the daughter nucleus. What we are now
actually interested in, is a formula for the differential energy spectrum of the escaping
electron

dN

dtdE
=
dΓ

dE
(1.17)

which gives the number of counts per time and energy unit. The differential decay
spectrum takes the following form:

dΓ

dE
= C · F (E,Z ′) · pe · (E +me) ·

√
(E +me)2 −m2

e· (1.18)

(E0 − E) ·
√

(E0 − E2)2 −m2
β (1.19)

The constant C stands for the fraction
G2
F cos

2θC |Mnuc|2
2π3 . mβ is the effective neutrino

mass, respectively

m2
β =

∑
i

| Uei |2 m2
i (1.20)

summing over all flavours. Noting that in the decay process of a tritium atom bound
in a T2 molecule there is a orbital electron, which can be in several excited states
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with energy Ef and probability Pf , the differential decay rate changes to:

dΓ

dE
=
∑
f

Pf ·C·F (Z,E)·p·Etot·(E0−E−Ef )·
√

Θ(E0 − E − Ef −mν) · ((E0 − E − Ef )2 −m2
ν))

(1.21)
Measuring the electron energy spectrum will yield the total decay energy minus the
energy of the anti-electron neutrino. Thus, the spectrum of the electron is shifted
by the effective mass of the neutrino

mν̄e =

√√√√ 3∑
i=1

| Uei |M2
νi (1.22)

In the approach of measuring the neutrino mass using the neutrinoless double beta
decay, one takes a look at the process of two neutrons decaying into two protons,
two electrons anf two anti-electron neutrinos. The continous energy spectrum of the
electron is shifted by two times the neutrino mass. If the neutrino is a Majorana
fermion, meaning it is its own anti-particle, then the anti-electron neutrino might
be directly absorbed in the second beta decay inside the nucleus. The emitted
electrons would result in a mono-energetic line at the endpoint of the spectrum,
with dacay rate of the neutrinoless double beta decay being proportional to the
effective Majorana mass mββ.
In cosmological observations, like done by WMAP and the Planck Satellite. data
from cosmic microwave background and baryonic acoustic oscillations were combined
based on the ΛCDM model.

1.3 Sterile neutrinos

A natural extenstion of the Standard Model of particle physics (SM) would be the
introduction of a right-handed neutrino, which from now on will be called sterile
neutrinos. Those neutrinos are only sensitive to gravitational interaction. Sterile
neutrinos make up a fourth mass eigenstate ν4 with eigenvalue m4 and mix up with
the other neutrino flavours. There are three possible models, which mass the sterile
neutrino could have. Those are considering sterile neutrinos in the mass range of
eV, keV and GeV. Sterile neutrinos with an electron-Volt mass could explain certain
anomalies occuring in reactor experiments for example. If the sterile neutrino has
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a mass in the range of kilo electron volts, they could be a viable candidate for
dark matter. Giga electron volt sterile neutrinos could explain the small masses
of the interacting neutrinos via the see-saw mechanism as well as being a solution
for baryogenesis (the asymmetry between matter and anti-matter in our universe).
Since the aim of this work is to develop a model to possibly find keV sterile neutrinos,
only these will be explained in some detail. Sterile neutrinos with a mass in the
keV range would serve as warm dark matter, a scenario between cold and hot dark
matter. The parameters of interest are its mass eigenvalue m4 as well as the active-
sterile mixing amplitude sin2θs. The main effort of cosmological observations is to
constrain the allowed region of these two free parameters. One can already guess,
that the mixing amplitude is very small, since sterile neutrinos are not supposed to
interact a lot with the other neutrino flavours. In the search for the mass of sterile
neutrinos, the beta decay of tritium is with its endpoint energy of E0 = 18.6keV
a perfect tool to probe the impact of an (still hypothetical) sterile neutrino. The
mixing of the four neutrino flavours is described with an extended PMNS matrix:
νe
νµ
ντ
νs

 =


U∗e1 U∗e2 U∗e3 U∗e4
U∗µ1 U∗µ2 U∗µ3 U∗µ4

U∗τ1 U∗τ2 U∗τ3 U∗τ4

U∗s1 U∗s2 U∗s3 U∗s4



ν1

ν2

ν3

ν4


One can then write

1 =
3∑
i=1

| U2
ei | + | Ue4 |:= cos2θs + sin2θs (1.23)

with θs denoting the active-sterile mixing angle. It can be considered as an effective
mixing of an active neutrino with mass mlight and sterile neutrino with mass m4,
since it is not possible yet to resolve the light mass states. Having a look at the
differential decay rate corresponding to the beta decay of tritium together with an
influence of a sterile neutrino, it looks like:

dΓ

dE
= cos2θs

dΓ

dE
(m2

light) + sin2θs
dΓ

dE
(m2

4) (1.24)

with

dΓ

dE
(m2

4) = C · F (E,Z ′) · pe(E +me)
√

(E +me)2 −m2
e(E0 − E)

√
(E0 − E)2 −m2

4

(1.25)
The spectrum of a decay into a sterile neutrino (equation above) would have a
lower endpoint, to be precise E0 −m4 and a really small amplitude sin2θs. Thus,
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the impact of a sterile neutrino on the whole beta spectrum results in a kink-like
signature at E0 −m4 and a tiny distortion of the amplitude in the region between
zero energy and E0−m4. This kink-like signature can be seen in Figure 1.1. A mass
of 10 keV and a mixing angle of 27 degrees has been used. Although the mixing
angle is extremely unrealistic, this example shows quite well the imprint of a sterile
neutrino on the spectrum of the beta electron.

Figure 1.1: Differential decay rate for the beta decay of tritium without sterile
neutrinos (red dashed) and with an sterile neutrino having a mass of 10 keV and a
mixing angle of 27 degrees (which is unrealistic, but shows quite well the imprint of
an sterile neutrino on the energy spectrum of the escaping electron)

Since tritium in reality occurs in molecular form, for example as a T2 molecule, the
energy of the remaining orbital electron needs to substracted from the energy of
the escaping electron, when having a look at the differential decay rate. This has a
slight impact on the spectrum. The aim of this work will be to develop a simplified
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model for the behaviour of the orbital electron after the decay in order to analyze
the spectrum more detailled.

12



Chapter 2

The KATRIN experiment

The KArlsruhe TRItium Neutrino experiment (KATRIN) is a beta decay experi-
ment with the goal to measure the effective mass of the anti-electron neutrino.This
happens with the use of high precision spectroscopy of the beta electrons produced
in the decay with an energy close to the endpoint E0. This chapter shall give a
short introduction to the measurement principle of KATRIN and to the experimen-
tal setup.

2.1 Experimental setup

With the aim to detect tiny distortions of the tritium spectrum near the endpoint
due to a non-zero effective neutrino mass, the KATRIN experiment implements a
high countrate of a stable molecular trititum source combined with a changeable
retarding potential acting as a high pass filter. The integral spectrum (Γ(t) = dN(t)

dt
)

is determined measuring the count rates at different retarding potentials. The main
components of the experimental setup will be described in the following and can
be seen in Figure 2.1. To the very left, there is the Rear Section, connected to
the Tritium Source (WGTS). To the right of the WGTS is the Transport Section,
followed by the Spectrometer Section. At the right end of the whole experimental
setup, there is the Detector Section. More detailed information on this topic may
be found in [19].
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Figure 2.1: The whole KATRIN experiment seen from a side view with a length of
70m. At the very left, there is the rear section, connected to the Windowless Gaseous
Tritium Source (WGTS). To the right of the WGTS is the Transport Section (DPS
and CPS), followed by the Spectrometer Section (PS+ Main Spectrometer) and in
the end the Detector Section (FPD).

2.1.1 Tritium source

In the KATRIN experiment, the used emitter of beta electrons is tritium, in its
molecular form T2, one of the isotopes of hydrogen. The decay process is the fol-
lowing:

T2 →3 HeT+ + e+ ν̄e (2.1)

There are some reasons, why molecular tritium is used for this experiment. First,
it has a pretty low endpoint energy of E0 = 18.6keV . Although the total number
of counts per second increases with energy, it drops near the endpoint proportional
to E−3. Therefore a low endpoint energy is prefererred [20]. Since the decay of
tritium is a superallowed transition between mirror nuclei, it has a relatively short
half life of about 12.3 years. This implied high statistics with low source density
during the lifetime of the experiment [20]. Another important reason is, that the
molecular structure of tritium is, compared to the structure of molecules including
heavier atoms, is less complicated. Thus the calculations of atomic effects can be
done more accurately. In KATRIN, the tritium is injected at the center into a 10m
long tube, which is called the Windowless Gaseous Tritium Source (WGTS). The
molecules diffuse towards both ends of the WGTS are pumped out at both ends
using turbo-molecular pumps. The pumped out tritium gets collected, reinjected
and thus forming a closed tritium cycle. Including the two pumping sections, the
WGTS is 16 m long. The WGTS beam tube is situated in a almost homogenous
magnetic field of 3.6T. The direction of the field shows into the direction of the
beam, guiding the electrons from the decay towards the spectrometer. The WGTS
tube itself is made of stainless steel and has a diameter of 90 mm. It is kept at a low
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temperature of 27 K, which makes sure that the column density ρd = 5 · 1017cm−2.
The main systematics of the Windowless Gaseous Tritium Source are due to the
stability of the column density, which is highly dependent on the pressure of the
injection and the temperature. Thus the temperature has to be kept stable with a
very high precision. This is done using a two phase NEON cooling system resulting
in temperature variations smaller than 30mK. With the above given column density,
the WGTS ensures an activity of the source of 1011 counts per second.

2.1.2 The Rear section

From the beta electrons escaping the tritium molecules at least half of them will
leave the WGTS in a backwards direction. This is due to the fact, that the starting
polar angle of all the electrons is uniformly distributed. Additionally, most of the
electrons going in forward direction will be either reflected at a magnetic field larger
than the field of the source or at the analyzing plane. This means, that nearly all
electrons resulting from the beta decay of tritium will hit the rear wall. Its task is,
to monitor the activity of the tritium.

2.1.3 The Transport Section

The Transport or Pumping Section, is divided into two subsections - the Differential
Pumping Section (DPS) and the Cryogenic Pumping Section (CPS). The flow of the
tritium from the source to the Spectrometer section is reduced by those two sections
by a 14 orders of magnitude. The DPS is equipped with Turbo Molecular Pumps,
reducing the tritium flow by five orders of magnitude. To prevent positive ions
from entering the Main Spectrometer, the WGTS and the DPS are byased with a
negative voltage. In the CPS, the tritium molecules are trapped by crypto-sorption
at 6K. The CPS is designed such that the probability of tritium molecules hitting
the vessel walls gets increased.

2.1.4 The spectrometer section

The KATRIN experiment has in total three spectrometers. First, there is the Mon-
itor Spectrometer [21], which is used to keep track of the Main Spectrometer’s high
voltage system. Then there is the Pre Spectrometer [22] as a retention system for
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low energy electrons and last the Main spectrometer [19]. The Main spectrome-
ter is used as an energy filter for the electrons working with high precision. The
Main Spectrometer is a Magnetic Adiabatic Collimation Filter combined with an
Electrostatic Filter (short MAC-E Filter). In Figure 2.2 it is shown how it works.
The gradient of the magnetic field collimates the momenta of the electrons in axial
direction. The electric field’s task is to reflect electrons with a kinetic energy lower
than the energy of the electric field qU, q denoting the charge and U the voltage of
the high voltage system. The energy resolution of the MAC-E filter is:

∆E

Ee
=
Ba

Bp

=
3 · 10−4T

6T
(2.2)

Bs is denoting the magnetic field in the analyzing plane wehereas Bp is the maximal
magnetic field generated by the pinch magnets. For energies of the electron around
the endpoint of the spectrum Ee = 18.6keV the Main spectrometer gives a resolution
of ∆E = 0.93eV .

2.2 The Detector Section

The Detector Section is set up at the end of the whole experimental setup. A
schematic overview of how it is built can be seen in Figure 2.3 . It encompasses
the silicon based pin-diode detector, or Focal Plane Detector (FPD) and a post
acceleration electrode. The FPD has a radius of 4.5 m and is divided into 148
pixels. Each pixel has an area of 44 mm2. If an electron passed the potential of the
Main Spectrometer, it is then detected in the FPD. Scanning the energy spectrum
of the electron using different potentials in the Main Spectrometer allows to count
electrons with an energy higher then the potential in the Main Spectrometer. Thus
it is possible to measure an integral energy spectrum of the beta decay.

2.3 The TRISTAN Project

The TRISTAN group at the KATRIN experiment, with TRISTAN being short for
TRitium Investigation of STerile to Active Neutrino mixing, aims to realize a tech-
nical solution for the search of keV sterile neutrinos with KATRIN. It allows to
investigate a mass range of the sterile mass eigenstate m4 in a range between 0 keV
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Figure 2.2: The working principle of the MAC-E Filter used in the KATRIN ex-
periment. Electrons, that get into the spectrometer, a guided along the magnetic
field lines into the middle of the Main Spectrometer, reffered to as the analyzing
plane. In the middle of the Main Spectrometer the electrostatic potential has its
maximum, such that only electrons with high enough axial momenta are able to get
to the detector.

and 18.6 keV [23]. Since this requires a measurement of the total beta decay energy
spectrum, the electron rate at the detector needs to be increased by a factor of 108.
The TRISTAN group considers a two-stage approach. In the first stage, the Pre-
KATRIN stage, the aim is to improve current laboratory limits after some days of
measurements. To allow the measuring of the whole beta-spectrum, the spectrom-
eter’s potential needs to be lower than 1kV. Additionally, the source of the tritium
source needs to reduced by a factor of 105, due to the fact that the FPD only allows
a count rate of 100 kilo counts per secons. In the Post-KATRIN stage, the aim is
to measure mixing angles below sin2θ = 10−6. Therefore, the whole strength of the
source is needed. This implies a major modification of the experimental setup at
KATRIN, especially in the Detector section, where a detector is required which will
be able to handle the full rate of incoming electrons. There currently is work going
on concerning the development of a Post-KATRIN detector. The TRISTAN group
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Figure 2.3: Schematic overview of the Detector Section set up at the end of KA-
TRIN’s experimental setup. The Main Spectrometer is on the left side of the shown
setup.

collaborates with the HalbLeiter LaborMunich (HLL) and the Lawrence Berkeley
National Laboratory (LBNL), working on a prototype of a new pn-type silicon drift
detector [24]. Each of those prototype detectros consists of seven hexagonal pixels.
Each of these pixels has a small read-out contact in the center. Several drift rings
are positioned around the read-out contact. A picture of the detector prototypes
can be seen in Figure 2.4.

18



Figure 2.4: Picture of the detector prototypes for the TRISTAN project produced
at the HLL. Each chip contains seven pixels. The designs differ in size and the
number of drift rings.
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Chapter 3

Development of an
energy-dependent Final State
Distribution

3.1 Introduction

As described in chapter one regarding the physics of active and sterile neutrinos, in
the search for sterile neutrinos using experiments based on the nuclear β decay of
tritium molecules (or isotopologes) the whole spectrum needs to be analysed, not
only the endpoint, as in the measurement of the neutrino mass. The differential
decay rate of the spectrum is given by

dΓ

dE
=
∑
f

Pf ·C·F (Z,E)·p·Etot·(E0−E−Ef )·
√

Θ(E0 − E − Ef −mν) · ((E0 − E − Ef )2 −m2
ν))

(3.1)

with Ef being the energy of the remaining orbital electron in the daughter molecule
and Pf the corresponding probability, that the orbital electron will end up in this
state after the dacay. The probability distribution for each state, that the electron
can have in the daughter molecule, is called the Final State Distribution (FSD). So
far, the FSD has only be calculated for the case of the β electrons having an energy
of 18.6 keV, thus for analysing the endpoint of the spectrum. Since the impact of
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sterile neutrinos on the spectrum is way beyond the endpoint, an energy-dependent
FSD is needed. The aim of this work is, to develop a simplified model describing the
bahaviour of the FSD for β energies below the endpoint, down to 12 keV β electrons.
First, the theoretical background needed to develop that model will be discussed.
The theoretical calculations are based on the Sudden approximation, used to handle
the evaluation of the matrix element. The derivation of the matrix element will be
done by the Lippmann Schwinger ansatz [4], ending up in a zeroth order transition
matrix element, that is independent on the recoil momentum of the escaping beta
electron. The initial and final state in the matrix element are the wavefunctions of
the T2 molecule and the daughter molecule 3HeT+. To get them, the Schrödinger
equation needs to be solved. Therefore the Born-Oppenheimer approximation is
used, to separate the molecular Schrödinger equation into a electronic and a nuclear
part. Solving the nuclear part of the coupled equations requires numerical methods.
Therefore the technique of expanding wavefunctions in terms of B-Splines will be
explained. Following the theoretical framework, a description of the four main parts
of the FSD will be given. After that, the focus will lie on the development of an
simplified energy-dependent description of the first two parts - the groundstate and
the first five electronically excited states. In the conclusion we will have a look at
the differences to the use of old models in the beta decay spectrum containing sterile
neutrinos.

3.2 The Sudden Approximation

To get the Final State Probability distribution, the transition probabilities from
an initial state (in this case the T2 molecule) to a final state (HeT+) need to be
calculated. Since the calculations of the matrix elements can get pretty complicated,
the first step is to simplify those using the so called Sudden approximation [9].
Quantum mechanical systems are in general described by a Hamiltonian H. If this
system goes through a change (i.e. a nuclear β decay), the Hamiltonian changes as
well as the properties of the system. To treat this change in a simplified manner,
the sudden approximation is applied. Start with a Hamiltonian H0 describing a
quantum mechanical system, before a sudden perturbation to the system happens
at time t = 0 to a system described by the Hamiltonian H1. Both Hamiltonians are
assumed to be independent of time. Before the change, for t < 0, the Schrödinger
equation for the system is:

H0ψk = E
(0)
k ψk (3.2)
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with E
(0)
k and ψk being the eigenvalues and eigenfunctions of the Hamiltonian H0.

The eigenfunctions of this system are assumed to form a complete, orthonormal set
ψk. The solution to the time-dependent Schrödinger equation

ih̄
∂

∂t
ψk = Hψ (3.3)

is then described by the expansion

ψ(t) =
∑
k

akψke
−iE(0)

k t/h̄ (3.4)

The summation goes through all eigenfunctions from the complete and orthonormal
set ψk. The coefficients ak shall be independent of time. Under the assumption of the
eigenfunctions being normalised to unity, the absolute square of those coefficients
may be interpreted as the probability to find the system in the state |ψk〉. At time
t = 0 the system gets perturbed and the Hamiltonian suddenly changes to H1. The
time-independent Schrödinger equation then becomes:

H1φn = E
(1)
k φn (3.5)

with the time-dependent solution being

ψ(t) =
∑
n

cnφne
−iE(0)

n t/h̄ (3.6)

again with a summation over the set of all eigenfunctions with time-independent
coefficients cn. Since the time-dependent Schrödinger equation is of first order in
time, the wavefunction ψ(t) must be continous in time t. This continuity has to
hold during the sudden change of the Hamiltonian as well. Thus at the time of the
sudden change, t=0, the condition

∑
k

ak |ψk〉 =
∑
n

cn |φn〉 (3.7)

has to hold. By multiplying this eqaution by 〈φn| and using 〈φn | φm〉 = δm,n the
time-independent coefficients cn are given by:

cn =
∑
k

ak 〈φn | ψk〉 (3.8)
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Under the assumption, that the Hamiltonian of the system changes instantaneously,
this condition for the coefficients is exact. Since such a change usually happens
during a time interval of finite length τ , the Hamiltonian H0 first changes to Hi,
with Hi being valid in the interval 0 < t < τ , and then, for t > τ to H1. The
time-independent Schrödinger equation for the Hamiltonian Hi is then, as usual:

Hiχl = E
(i)
l χl (3.9)

and the time-dependent solution ψ(t) =
∑

l blχle
−iE(i)

l t/h̄. Since the condition of the
wavefunction remaining continous during the perturbation still holds, at time t=0
the equation ∑

k

akψk =
∑
l

blχl (3.10)

holds, which yields the the condition for the coefficients bl:

bl =
∑
k

ak 〈χl | ψk〉 (3.11)

At the time t = τ the wavefunction has to stay continous as well, thus yielding:∑
l

blχle
−iE(i)

l τ/h̄ =
∑
n

cnφne
−iE(1)

n τ/h̄ (3.12)

Pluggin in the solution for the coefficients bl from before, one gets for the cn:

cn =
∑
k

∑
l

ak 〈φn | χl〉 〈χl | ψk〉 ei(E
(0)
n −E

(i)
l )τ/h̄ (3.13)

For an instantaneous change of the system with τ = 0 the above equation for the
coefficients cn gets the known form. For τ 6= 0, the difference lies in the exponentials.
If this time duration τ is small compared to h̄

|E(0)
n −E

(i)
l |

, which means

(E
(0)
n − E(i)

l )τ

h̄
� 1 (3.14)

the change of the wavefunction in the interval 0 < t < τ is small and can thus be
neglected. The sudden approximation is then to set τ = 0. In the following, the
transition probability for the decay of a tritium nucleus in a tritium molecule will
be derived using the Lippmann-Schwinger expansion. The total probability ampli-
tude will be written as the sum of the zeroth, the first etc. order amplitudes with
the zeroth order probability amplitude corresponding to the transition probability
within the sudden approximation.
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3.3 Derivation of the transition probability

The derivation of the transition probability is described in [4] and will be shown in
detail now. Consider to start with the process

RT → RHe+ + e− + ν̄ (3.15)

The Hamiltonian for the whole system H = Hi,f + Vi,f is divided into the part
Hi,f describing the molecular system and a single lepton either in its inital or final
state and Vi,f describing the interaction between them. Hi,f can be seen as the free
Hamiltonian and Vi,f as a small perturbation. The interaction term can be split in
the following way:

Vi,f = Ui,f +Wi,f (3.16)

Here Ui,f stands for the coulombian interaction and Wi,f for the weak interaction
causing the dacay. The transition probability of a molecule RT with a rest R to a
molecule RHe+ after beta-decay is described dy:

| Tfi |2=| 〈f |Wi |i〉 |2=| 〈ψf |Wi |Φi〉 |2 (3.17)

Tfi is the transition matrix element, 〈ψf | is the final eigenstate of the Hamiltonian
H and |Φi〉 is the eigenstate of the free Hamiltonian Hi describing the initial motion
of the RT molecule. Wi is the operator describing the weak interaction process.
Now the final eigenstate 〈ψf | of the Hamiltonian H can be expanded using the
Lippmann-Schwinger ansatz:

〈ψf | = 〈Φf |+ 〈Φf |Vf (E −Hf + iε)−1 + ... (3.18)

where (E −Hf + iε)−1 is the free Greens function and 〈Φf | is the eigenstate of the
free Hamiltonian Hf . With Vf = Uf the transition matrix element can be written
in the following way:

Tfi = 〈ψf |Wi |Φi〉 = 〈Φf |Wi |Φi〉+ 〈Φf |Uf (E −Hf + iε)−1Wi |Φi〉+ ... = (3.19)

〈Φf |Wi |Φi〉+ 〈Φf |Uf (E −Hf + iε)−1 |Φi〉+ ... = (3.20)

T
(0)
fi + T

(1)
fi + ... (3.21)
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Here Φi,f are the initial and final eigenvectors of the free Hamiltonian Hi,f . In the
above equation higher order terms are neglegted due to the smallness of the weak
coupling constant. For the purposes of this work, only the zeroth order transition
matrix element is of interest.

3.3.1 Evaluation of T
(0)
fi

The process
RT → RHe+ + e− + ν̄ (3.22)

represents a decay of one particle into three final particles. According to field theory,
such processes can be described as a scattering process. The emission of a particle
corresponds to the absorption of an antiparticle with opposite energy. Thus the
decay process can be described by a more symmetrical

RT + ν → RHe+ + e (3.23)

The free Hamiltonian for the initial state of the molecule can be written as

Hi = HRT +Hν (3.24)

whereas the free Hamiltonian for the final state is

Hf = HRHe+ +Hβ (3.25)

The Hamiltonians can be further divided into

Hf,i = T c.m. +Hmol +Hnuc (3.26)

where T c.m. describes the center of mass motion of the molecule, Hmol describes
the Coulombian Hamiltonian terms and Hnuc the internal motion of the nucleons.
According to this, the wavefunctions of the initial and final states can be factorized
in the following way:

Φf,i = ψf,iφl(~rl) = (3.27)

1

(2π)
3
2

ei~p
f,i~rψnucψmolφl(~rl) (3.28)
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The expression for the zeroth order transition matrix element then gets the form [4]

T
(0)
fi =

1

(2π)3
〈ei~pf~rψfnucψfmolφβ(~rl)|Wi |ei~p

i~rψinucψ
i
molφν(~rl)〉

Evaluating this leads to

T
(0)
fi =

1

2π6
δ( ~K − ~Kc)T

weak(0)
fi T

(0)
fi ( ~K) (3.29)

with KC being the center of mass momentum and

T
(0)
fi ( ~K) = 〈ψRHe+f | eifAB ~K~rAB |ψRT0 〉 (3.30)

.

3.3.2 The zeroth order transition probability

The 0-th order transition probability can be written as [4]

| T (0)
fi |2=

1

2π6
δ( ~K − ~Kc) | Tweak(0)

fi |2| T (0)
fi ( ~K) |2 (3.31)

If the transition probability is averaged over all directions of the neutrino, | Tweak(0)
fi |

can be assumed to be constant. So the only part of the above formula, that has to
be evaluated, is | T (0)

fi ( ~K) |2. The 0-th order transition amplitude can be written as:

T
(0)
fi ( ~K) = 〈ψRHe+f | eifAB ~K~rAB |ψRT0 〉 (3.32)

where ψRT0 is the wavefunction of the initial molecule containing a tritium atom T
and some rest R, whereas ψRHe

+

f is the wavefunction of the final molecule after beta-
decay. fAB = mB

mA+mB+2me
is a prefactor resulting from the calculation of the zeroth

order transition matrix element. Working with the Born-Oppenheimer approxima-
tion, those wavefunctions can be written as ψRT0 = φ0ξ

0
000 and ψRHe

+

f = φnξ
n
νJmJ

,
with φ0 and φn being the initial and final electronic wavefunctions. ξ0

000 and ξnνJmJ
are the rovibrational initial and final wavefunction for a given electronic state n. To
get the transition probability, one has to sum over all rovibrational states belonging
to a final electronic state n.
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| T (0)
ni |2=

∑
ν,J,mJ

| 〈ψRHe+f | eifAB ~K~rAB |ψRT0 〉 |2 = (3.33)∑
ν,J,mJ

〈ψRT0 | e−ifAB
~K~rAB |ψRHe+f 〉 〈ψRHe+f | eifAB ~K~rAB |ψRT0 〉 = (3.34)∑

ν,J,mJ

〈φ0ξ
0
000| e−ifAB

~K~rAB |φnξnνJmJ 〉 〈φnξnνJmJ | eifAB
~K~rAB |φ0ξ

0
000〉 = (3.35)∑

ν,J,mJ

〈ξ0
000| 〈φ0| e−ifAB ~K~rAB |φn〉 |ξnνJmJ 〉 〈ξnνJmJ | 〈φn| eifAB

~K~rAB |φ0〉 |ξ0
000〉 = (3.36)

〈ξ0
000| 〈φ0| e−ifAB ~K~rAB |φn〉 〈φn| eifAB ~K~rAB |φ0〉 |ξ0

000〉
∑
ν,J,mJ

|ξnνJmJ 〉 〈ξnνJmJ | (3.37)

According to orthonormality
∑

ν,J,mJ
|ξnνJmJ 〉 〈ξnνJmJ | = 1. Since the integration in

the inner brackets in not dependent on the vector ~rAB, one gets:

| T (0)
ni |2= 〈ξ0

000| 〈φ0| e−ifAB ~K~rABeifAB ~K~rAB |φn〉 〈φn | φ0〉 |ξ0
000〉 = (3.38)

〈ξ0
000 | ξ0

000〉 | 〈φn | φ0〉 |2 (3.39)

With the electronic overlap matrix element Sn0 = 〈φn | φ0〉 one finally gets the
following expression for the zeroth order transition probability:

| T (0)
ni |2≈| Sn0(Re) |2

∫ ∞
0

| ξ0 |2 dR =| Sn0(Re) |2

So one can conclude, that the overall probability for a molecule to be in a elec-
tronic state n after beta-decay is in a first approximation independent on the recoil
momentum of the beta-electron and thus on its energy.

3.4 The Born-Oppenheimer Approximation

With the knowledge, how to calculate the matrix element, it is necessary to know
the wavefunction of the initial and the final state. In order to calculate the initial
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and final channel wavefunctions, the Schrödinger equation for both, the decaying
and the daughter molecule, need to be solved. Therefore the Born-Oppenheimer
approximation is used [9]. The molecular Schrödinger equation will be transformed
into a system of coupled equations. After this, the position of the nuclei will be
assumed to be fixed as seen from the electrons. In this case, relativistic as well as
spin interactions are beeing seen as a small perturbation. Start with the general
Hamilton operator for a molecule [11]

H =
∑
N

P 2
N

2mN

+
∑
n

P 2
n

2me

+
e2

4πε

(
1

2

∑
n,m

1

dnm
−
∑
N,m

ZN
dnm

+
1

2

∑
N,M

ZNZM
dNM

)
(3.40)

Here, P is the momentum operator. The large indices indicate the nuclei whereas
the small ones stand for the electrons. The distance between particles is given by
dnm =| ~rn − ~rm |. The term 1

2

∑
n,m

1
dnm

describes the coulomb interaction between

the electrons,
∑

N,m
ZN
dnm

stands for the coulomb interaction between the nuclei and

the electrons and 1
2

∑
N,M

ZNZM
dNM

describes the coulomb interaction between the nuclei

themselves. Defining TK =
∑

N
P 2
N

2mN
,which describes the dynamics of the nuclei ,the

Hamiltonian can be rewritten as

H = H0 + TK (3.41)

where H0 is defined as the Hamilton operator describing the dynamics of the elec-
trons as well as the coulomb interaction with the nuclei. The Schrödinger equation,
which will be the goal to simplify, can then be written as:

(H0 + TK)ψ(
~R,~r) = Eψ(~R,~r) (3.42)

Here, ~R is the internuclear separation. First, the position of the nuclei is assumed
to be fixed. Thus, the above eqaution reduces to:

H0φ
~R(~r) = E(0)(~R)φ

~R(~r) (3.43)

This equation is called the electronic Schrödinger equation. The index ~R indicates,
that the wavefunction φ

~R(~r) is still dependent on the internuclear separation. The

solutions to this equation are the eigenstates φ
~R
s (~r) together with the eigenvalues
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E
(0)
s (~R). The above equation will be solved for each fixed internuclear separation.

The corresponding eigenvalues are called potential curves. Using these potential
curves, the wavefunction ψ(~R,~r), which solves the whole molecular Schrödinger

equation, can be expanded in terms of the eigenstates φ
~R(~r):

ψ(~R,~r) =
∑
s

χs(~R)φ
~R
s (~r) (3.44)

Here, the χs(~R) are the cooefficients, which only depend on the internuclear sep-
aration but not on the position of the electrons ~r. Those coefficients can later
be identified as the nuclear wave functions. This series can now be put into the
Schrödinger equation.

∑
s

E(0)
s (~R)χs(~R)φ

~R
s (~r) +

∑
s

TK(χs(~R)φ
~R
s (~r)) = E

∑
s

χs(~R)φ
~R
s (~r) (3.45)

It was used, that the wavefunctions φ
~R
s (~r) are eigenstates of the Hamiltonian H0. In

the next step, the above equation will be averaged out over the wavefunctions of the
electrons, aiming at getting an equation for the nuclear wavefunctions. Therefore,
the equation will be multiplied from the left by (φ

~R
t (~r))∗ and afterwards integrated

over the position of the electrons ~r. It will be used, that the wavefunctions φ
~R
s (~r)

are orthonormal, thus 〈φ~Rt (~r), φ
~R
s (~r)〉 = δt,s.

E
(0)
t χt(~R) +

∫
d~r(φ

~R
t (~r))∗TK

(∑
s

χs(~R)φ
~R
s (~r)

)
= Eχt(~R) (3.46)

The integral can be written as:
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∫
d~r(φ

~R
t (~r))∗TK

(∑
s

χs(~R)φ
~R
s (~r)

)
= (3.47)

∫
d~r(φ

~R
t (~r))∗TK

(∑
s

χs(~R)

)
φ
~R
s (~r)+ (3.48)

∫
d~r(φ

~R
t (~r))∗TK

(∑
s

φ
~R
s (~r)

)
χs(~R)+ (3.49)

h̄2

∫
d~r(φ

~R
t (~r))∗

∑
s,k

1

mk

∂~Rkφ
~R
s (~r)∂~Rkχs(

~R) (3.50)

The first summand can be written as TKχt(~R). This can be used to implicitely
define cts.

∫
d~r(φ

~R
t (~r))∗TK

(∑
s

χs(~R)φ
~R
s (~r)

)
= TKχt(~R) +

∑
s

ctsχs(~R) (3.51)

Using this, the molecular Schrödinger equation can be written as a system of equa-
tions:

H0φ
~R(~r) = E(0)φ

~R(~r) (3.52)

TKχt(~R) +
∑
s

ctsχs(~R) = (E − E(0)
t )χt(~R) (3.53)

As can be seen in the above equation, getting the nuclear wavefunctions requires
the knowledge of the eigenvaules of the electronic equation for a fixed internuclear
separation, thus the potential curves. It is not necessary to know the eigenstates
of the electronic equation, to obtain the nuclear wavefunctions. To decouple this
system, the interaction between the electron shell and and the nuclear motion needs
to be neglected. Therefore the Born-Oppenheimer approximation is given by:

cts = 0 (3.54)
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3.5 B-Splines

Since the Schrödinger equation, which is the equation needed to be solved to get
the initial and final channel wavefunctions, can be solved analytically only in very
few cases, B-Splines are one option used to solve it numerically, which will be used
in this work. In this section, a brief introduction to the mathematics of B-Splines
will be given. A complete introduction to their theory is given in [12]. Consider
a one-dimensional box with coordinate x. A B-Spline basis set in this box with
endpints x=a and x=b has the following properties:

• A certain amount of interior points s-1 is being chosen, which divides the box
into subintervals. The sequence of increasing points s+1 is called breakpoints.
As an example, take the one-dimensional box [0, 5] with s=5 subintervals. The
breakpoint sequence then is 0, 1, 2, 3, 4, 5

• The order k of the B-Splines describes the maximum degree k-1 of polynomial
pieces, that the B-Splines are made of.

p(x) = ak−1x
k−1 + ...+ a1x1 + a0 (3.55)

• The last property are the so called knots, which are a sequence of points
xi. Every breakpoint is connected to one or more knots, which each knot
having a multiplicity. The higher the multiplicity, the less continous a function
gets. In general the multiplicity is chosen to be the order of the B-Splines
at the endpoints and unity for the interior points of the box. This yields,
that that the number of knots for a given box and breakpoint sequence is
equal to s+2k-1. For example, consider the above breakpoint sequence and
an order of the B-Splines k=4. The obtained knot sequence then would be
xi = 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5 with a total number of 12 knots.

In the process of solving the Schrödinger equation using the above described Basis
set, a box with a size r is chosen together with an order of B-Splines kr. The knot
sequence corresponding to the breakpoint sequence, ri is construced of nr B-Splines.
A solution for the wavefunction can then be approximated by the linear combination

ψ(r) =
nr∑
α=1

CαBα(r) (3.56)
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with Cα being the coefficients. Using this knowledge and the code written by Saenz
to exaclty calculate the FSD, a simplified model for an energy-dependence will
be developed. In the next section, the four main parts of the whole final state
probability distribution will be shortly described.

3.6 Description of the FSD

After the β-decay of a tritium atom being bound in a T2 molecule, the final state
energy distribution can be seen in Figure 3.1 [8].
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Figure 3.1: The whole final state distribution for a T2 molecule as calculated in [8]
for an endponint energy of 18.6 keV

It can be divided into four main parts. The first narrow peak in the FSD describes
the remaining electron energy distribution in the rovibrational broadened ground-
state. The following two peaks stand for the first five electronically excited states,
especially the two first excited states, that go up to an energy of ≈ 50eV . Af-
ter that follows the electronic continuum, that goes up to an energy of ≈ 240eV .
The FSD from 240 eV to higher energies can be described by an atomic tail. The
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groundstate of the FSD can be, as explained in Robertson’s paper, described by a
gaussian. The groundstate is broadened due to rotational and vibrational excita-
tions and can, according to [1] be described with the formalism of an anharmonic
quantum mechanical oscillator. The center of the gaussian lies around the recoil
energy of the daughter molecule. After the beta decay the orbital electron can also
end in an electronically excited state. The first five excited states are dissociative.
The nf = 2, 4 and 5 states disscociate into a He+ ion plus an T atom. The other
two states, n=3 and 6 dissociate into a He atom and a T+ ion. The probabilities
for those states, except for the first and the second electronically excited state, lie
below 1% [9]. In the energy range above the energies of the first five electronically
excited states takes the effect of the nuclear motion of the molecule into account [5].
According to [8] the FSD above 240 eV can be described to a good accuracyby the
following energy-dependent expression

P (E) ≈ 14.7

(
8e−(4arctanκ)/κ√

1− e−4π/κ(1 + κ2)2

)2
dE

eV
(3.57)

with κ =
√

(E − 45eV )/13.606eV .

3.7 Simplified model for an energy-dependent FSD

In this section a simplified model for an energy-dependent final state distribution
is derived. The main focus lies on the groundstate and the first five electroncially
excited states. The electronic continuum is for simplicity assumed to remain un-
changed for lower β-energies. For energies above 240 eV an energy-dependent for-
mula is given in [8].

3.7.1 Energy-dependent groundstate

In the following it will be described, how an energy-dependent final-state distribution
of the groundstate for the molecular decay of T2-molecules might look like. As
described in [1] the groundstate of the FSD, which is broadened by rotational and
vibrational excitations, is centered around the recoil energy of the daughter molecule
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Erec =
1

2Mges

(
(E2

tot −m2
e) + 2 | ~pe || ~pν | cos(θ) + (E2

ν −m2
ν)
)

(3.58)

with Etot = (Ekin +me) being the total energy of the beta-electron and
Eν = (Emax−Etot) where Emax is the maximal energy that the beta-particle can get.
Mges is the total mass of the daughter molecule, which is assumed to be six times
the proton mass (differences between neutrons and protons are neglected as well as
the binding energy). In Figure 3.2 the recoil energy dependent on the kinetic energy
of the beta-electron can be seen for emission angles of θ = 0 and θ = π between the
electron and the anti-electron neutrino.
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Figure 3.2: Recoil energy of the daughter molecule after beta-decay for θ = 0 (green)
and θ = π (blue) dependent on the kinetic energy of the beta-electron.

The broadening due to rovibrational excitations is described by a zero-point motion
of a harmonic oscillator with a small anharmonic term. Its energy is given in [1] by:

Ezp =
1

2
h̄ωc − a

(
1

2
h̄ωc

)2

(3.59)

with a = −0.0537(8) eV −1 and h̄ωc = 0.5320(5) eV . The groundstate of the FSD
can then be described by a gaussian distribution with standard deviation [1]
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σEexc =

√
Erec ·

2µ

3MT

Ezp (3.60)

Here, µ stands for the reduced mass of the system and MT for the mass of the tritium
atom. For lower electron energies one gets lower recoil energies of the daughter nu-
cleus and the groundstate distribution will shift to smaller excitation energies. Due
to the dependence of the standard deviation on the recoil energy, the distribution
itself will get narrower for lower electron energies. This can be seen in Figure 3.3
for several kinetic energies.
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Figure 3.3: The groundstate FSD as calculated by Saenz (red solid curve).The nor-
malisation of Gaussian groundstate (blue dashed curve) has been fitted to the calcu-
lated FSD, such that the two curves match. The only free parameter of the Gaussian
distribution is the normalisation. The other curves describe how the groundstate
distribution might change with lower beta-electron energies.

It was assumed for simplicity, that only emission angles of θ = π and θ = 0 occur in
this process with both being equally probable. This leads to a mean recoil energy
of

Emean
rec =

(E2
tot −m2

e) + (Emax − Etot)2

Mges

(3.61)
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which gave the shift of the gaussian distribution to lower energies. The Gaussian
groundstate distributions look quite different for different emission angles. This can
be seen in Figure 3.4 for an angle of 0, π and for the mean recoil energy shown
in equation (4). However, this assumption is indeed justified. The probability of
different emission angles is given by [10]

P (E, θ)dθ = A · F (E,Z)(E +me)p(E0 − E)2 ·
(

1 + α
v

c
cos(θ) +

b

E

)
dθ (3.62)

Here α stands for the angular correlation coefficient, which can be calculated to be

α = −0.1035 (3.63)

This can be seen in Figure 3.5 as an example for a 6 keV, a 10 keV and a 15 keV
beta-electron. In Figure 3.6 the angular probability distributions for those three
beta-energies have been compared to an isotropic distribution with P (cos(θ)) = 1

2
.

The assymetry of the distributions, which quantifies the deviation from an isotropic
distribution and is given by [3]

A =
P (π)− P (π/2)

P (π/2)
(3.64)

gets smaller for decreasing β-energies. For a 6 keV electron the asymmetry is around
1.57%, for a 10 keV electron 2.01% and for a 15 keV electron 2.45%. When calcu-
lating the recoil energy of the daughter molecule by weighting each energy by the
probability of the angle occuring, the differences to the above assumed simplification
are neglibily small. Thus the mean recoil energy can be written as:

Erec
mean =

∑
0<θ<180

P (E, θ) · Erec(E, θ) ≈
(E2

tot −m2
e) + (Emax − Etot)2

Mges

(3.65)

So the energy dependence of the groundstate FSD can be described by a gaussian
distribution, whose standard deviation is dependent on the recoil energy of the
daughter molecule and thus on the recoil energy of the escaping β particle. The
distribution gets shifted to lower recoil energies for lower β energies. The width of
the distribution gets smaller and the normalization larger. This is in agreement with
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Figure 3.4: Gaussian Groundstate FSD for a 6 keV beta-particle with a scattering
angle of θ = 0 (green curve), θ = π (red curve) and an averaged recoil energy (blue
dotted curve), where both scattering angles are assumed to occur equally often.

the fact, that the total probabilty for each electronically excited state (the sum over
all rovibrational probabilities) is not dependent on the recoil energy (as described in
the section about the derivation of the zeroth order transition probability). The used
method works for electron energies between 6 keV and 18.5 keV. For lower energies,
the gaussian distribution will imply probabilities for negative excitation energies,
which is not wanted. It may be, that this is due to the fact, that interactions
between the beta-particle and the daughter molecule can not be neglegted for lower
electron energies.

3.7.2 Energy-dependent excited FSD

In this section a simplified model for the energy-dependent behaviour of the FSD
corresponding to the first five electronically excited states will be derived. It will be
done in the following way: Since the FSD of the excited states is mainly influenced
by the first and the second excited state, the focus will lie on them. Using the

37



0 20 40 60 80 100 120 140 160 180

Angle [degrees]

0.00540

0.00545

0.00550

0.00555

0.00560

0.00565

0.00570
P
ro
ba
bi
li
ty

Angular probability, 6 keV electron

Angular probability, 10 keV electron

Angular probability, 15 keV electron

Figure 3.5: Angular probability distribution for a 6 keV (blue), a 10 keV (green)
and a 15 keV (red) β- particle.

calculation methods from Saenz et al. implemented in a FORTRAN code, the first
task will be to reproduce the FSD for the first two excited states corresponding to
an energy of the beta electron of 18.6 keV. The resulting FSDs will be gaussian like.
In the next step, the same calculation methods are used to evaluate the FSDs for
the first two excited states for lower energies of the escaping electron, i.e. 16,14 and
12 keV. They too will be gaussian like. Fitting gaussians to them and describing the
three parameters height, width and mean value dependent on the beta energy will
result in a gaussian model for the excited states FSD. The final state distribution
for the excited bound states of the 3HeT+ molecule includes the first five excited
states nf = 2, 3, 4, 5, 6. This can be seen in Figure 3.7. In an approximation this
part of the FSD can be seen as the sum of two gaussian like distributions. The first
gaussian is centered around an excitation energy of approximately 28 eV whereas
the second one is centered around an energy of approximately 35 eV.

According to [9] starting with the tritium molecule in its total groundstate, i.e.
the rotational Ji and vibrational νi quantum number being zero and the electronic
quantum number ni = 1, the total probabilites for the tritium molecule to end in an
electronically excited state with quantum numbers nf = 2, 3, 4, 5, 6 is shown in Table
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Figure 3.6: Angular probability distribution for a 6 keV (blue), a 10 keV (green)
and a 15 keV (yellow) β- particle dependent on the cos(θ) compared to an isotropic
distribution (red) .

3.1. As can be seen, the probabilities for the states nf = 2 sums up to 17.359 %
and for nf = 3 to 7.761 %. The probabilities for the electronic states nf = 4, 5, 6 lie
below 1%. Thus the first gaussian like part is mainly the first excited state, whereas
the second gaussian like part is the probability distribution for the second excited
state. In order to develop a simplified model for an energy-dependent description of
the electronically excited FSD, the latter will be neglected. The procedure will be
the following: First the FSD for each of the first two electronically excited states will
be calculated separately for an endpoint energy of 18.6 keV using Saenz Code. This
will be done to first reproduce old results and check, if the calculations run properly.
In the next step, for each of those two excited states, the FSD will be calculated
for β-electrons with an energy of 16,14 and 12 keV. To this distrubutions, gaussians
will be fitted yielding a closed and simplified formula to describe the excited final
state distribution dependent on the energy of the β-electron down to energies of 12
keV. To get the FSD for an electronically excited state nf , the matrix element

〈ψf | ei ~K ~R |ψi〉 (3.66)
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Figure 3.7: Final State probability distribution of the first five electronically excited
states. The first gaussian like part of the distribution is mainly influenced by the
first excited state whereas in the second gaussian like part the second excited states
contributes.

n Pn(Ji = 0) Energy range [eV]
2 17.359 19.65 - 40.84
3 7.761 30.41 - 44.38
4 0.782 33.88 - 48.06
5 0.011 36.30 - 44.95
6 0.918 36.18 - 49.59

Table 3.1: Total probabilities for each electronically excited final state. The total
probability for the states nf = 4, 5, 6 is below one percent.

needs to be evaluated, with ~K being the recoil of the β electron and ~R the inter-
nuclear separation. Therefore the channel wavefunctions ψi,f = ψn,J,ν have to be
known. The initial state will be set to the total groundstate, i.e. ψi = ψn=1,J=0,ν=0.
The final channel wavefunctions will be ψf = ψn=2,J,ν and ψf = ψn=3,J,ν . In the end,
the FSD for an electronically excited state nf will be

Pn =
∑
J

| 〈ψn,J,ν | ei ~K ~R |ψ100〉 |2 (3.67)
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summing over all rotational quantum numbers. The channel wavefunctions are
calculated using the Born-Oppenheimer approximation. As can be seen in the sec-
tion concerning the derivation of the zeroth order transition probability, the ma-
trix element itself can be divided into an electronic overlap 〈φn | φ0〉 and the nu-
clear overlap. Using the nucfix code, the nuclear wavefunctions are calculated in
the Born-Oppenheimer approximation using only the eigenvalues of the electronic
Hamiltonian for a fixed internuclear separation, i.e. the potential curves. The actual
electronic wavefunctions are not needed. The used potential curves for the initial
and the final state were taken from [6] and can be seen in Figure 3.8 and Figure 3.9.
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Figure 3.8: Potential curve for the electronic groundstate of the T2 molecule. The
electronic energies are shown in Hartree and the internuclear separation in atomic
units (a.u.)

The nucfix code then calculates the nuclear wavefunctions numerically using a B-
Spline Basis set. For the calculation of the initial and final channel wavefunction 602
B-Splines were used with a box radius of R=30 . The order of the B-Splines was set
to 10. With the knowledge of the nuclear wavefunctions, the transition probabilities
to each electronically excited state are calculates using the rovib-trans code written
by Saenz et.al. To do so, an appropriate number of rotational quantum numbers has
to be chosen. Therefore the total probabilities of each rotational quantum number
J, which is the sum over all vibrational quantum numbers ν
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Figure 3.9: Potential curves for the first two electronically excited states of the
3HeT+ molecule. The internuclear separation is shown in atomic units, the elec-
tronic energies in Hartree.

PJ =
∑
ν

Pn,J,ν (3.68)

is plotted in Figure 3.10.

As can be seen in Figure 3.10, the probability for rotational quantum numbers
above 30 lies below 1%. Thus it is sufficient, to include only the first 30 J’s in the
calculation of the transition probabilities:

Pn =
30∑
J=0

| 〈ψn,J,ν | ei ~K ~R |ψ100〉 |2 (3.69)

In the next step we get the final state distribution for each of the electronically
excited states for an escaping β electron with an energy of 18.6 keV. The results
can be seen in Figure 3.11 and Figure 3.12.

The plots in Figure 3.11 and Figure 3.12 of the distributions for each excited are
in good agreement with earlier results. The distribution of the first excited state
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Figure 3.10: Probability distribution of the rotational quantum numbers J for an
β electron energy of 18.6 keV. For each J the sum P2J =

∑
ν P2,J,ν was evaluated.

Since the probabilty for rotational quantum numbers above 30 is below 1%, it is
sufficient to include only the first 30 in the calculation of the transition probability.

is centered around an energy of 28 eV, the distribution of the second excited state
around 35.2 eV. The total probabilities sum up to 17.11% for the first excited state
and to 7.67% for the second excited state. In the next step, the FSD for each
of those excited states is evaluated at different, lower energies of the escaping β
electron. First, it has to be known how high the number of rotational quantum
numbers must be, in order to calculate the transition probability sufficiently. The
J-distributions are plotted for different lower energies in Figure 3.13.

As can be seen in Figure 3.13, the probability distributions of the rotational states
get shifted to lower J’s for smaller β energies. For the calculation of the 16 keV
FSD, 30 rotational quantum numbers were used. For the calculation of the lower
energy FSD’s it is sufficient to include the first 25 rotational states in the evaluation.
Doing so, the results of the low-energy FSD’s for the first two electronically excited
states are shown in Figure 3.14 and Figure 3.15.

The Final State Probability distributions for lower energies of the escaping β electron
are shifted slightly to smaller excitation energies for both, the first and the second
electronically excited state. The height of the distributions increases with decreasing
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Figure 3.11: Final State Probability Distribution for the first electronically excited
state n=2 corresponding to an β electron energy of 18.6 keV as calculated with
the code of Saenz. The gaussian like distribution is centered around an excitation
energy of 28 eV. The total probability sums up to Pn =

∑
J Pn,J,ν = 0.1711

recoil energy for both FSD’s, similarly to the bahaviour of the groundstate FSD.
A change in the width of the distrubutions cannot be seen with bare eyes. In the
next step, it is assumed, that the FSD’s for the electronically excited states can be
approximated by gaussians, whose parameters now have to be evaluated dependent
on the recoil energy of the escaping β particle. First, start with the first excited
state distribution, n=2. A gaussian is fitted to each FSD corresponding to a certain
recoil energy applying a least square fit. As an example, the gaussian fit to the
first excited state distribution of a 18.6 keV electron is shown in Figure 3.16. The
amplitude, center and width parameters for each energy are shown in Table 3.7.2

As can be seen in the Figures 3.17,3.18 and 3.19 showing the energy-dependent
behaviour of the gaussian parameters, the amplitude increases with decreasing recoil
energy whereas the the mean value decreases with decreasing recoil energy. The
width of the gaussian decreases as well with decreasing recoil energy, besides a
small deviation for 16 keV. To get an energy-dependent description of the FSD, the
three parameters of the gaussian need to be described dependent on the β energy.
Therefore, a linear fit is applied to all three of them. The plotted results can be seen
in the figures below. In Table 3.7.2, the parameters slope and intercept are shown
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Figure 3.12: Final State Probability Distribution for the second electronically ex-
cited state n=3 corresponding to an β electron energy of 18.6 keV as calculated with
the code of Saenz. The gaussian like distribution is centered around an excitation
energy of 35.2 eV. The total probability sums up to Pn =

∑
J Pn,J,ν = 0.0.0767

Energy [keV] (n=2 gaussian) Amplitude Mean Value Width
18.6 0.02955441 28.0372802 10.6426924
16 0.02985940 27.5597441 10.6700508
14 0.03003489 27.2169073 10.5802247
12 0.03015821 26.8894655 10.3826095

Table 3.2: Parameters of the gaussians fitted to the FSD of the first electronically
excited state for decreasing energies.

for those parameters.

The same method will now be applied to the second electronically excited state
distribution. Again, a gaussian was fitted to each FSD corresponding to a certain
recoil energy of the escaping electron. The fit to the 18.6 keV FSD of the n=3
state is shown in Figure 3.20. The three parameters, that came out of the fits, for
different energies are shown in Table 3.7.2
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Figure 3.13: Probability distribution P2J =
∑

ν P2,J,ν of rotational states J for β
electron energies of 18.6, 16, 14 and 12 keV. For lower energies, the distributions
get shifted to smaller rotational quantum numbers.

Parameters (n=2 gaussian) slope interscept
amplitude -8.7767e-05 0.03125467
mean value 0.17406368 24.7884353
width 0.03830749 9.98864151

Table 3.3: Fit parameters slope and interscept for the linear fit of the amplitude,
mean value and width of the gaussian corresponding to the FSD of the first elec-
tronically excited state.
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Figure 3.20: Final State Probability Distribution of the second electronically excited
state together with a gaussian fit.
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Figure 3.14: Final State Probability Distribution of the first excited state as cal-
culated with the code of Saenz corresponding to β electron energies of 18.6, 16, 14
and 12 keV. The distributions get shifted slightly to lower excitation energies. The
height of the FSD grows slightly for decreasing βenergies.

Energy [keV] (n=3 gaussian) Amplitude Mean Value Width
18.6 0.01996905 35.2513630 4.65029444
16 0.02031414 34.8725038 4.56251837
14 0.02039151 34.4781962 4.36190905
12 0.02031106 34.1726605 4.75174195

Table 3.4: Parameters amplitude, mean value and width of the gaussian fitted to
the FSD of the second excited state.

The plotted parameters dependent on the recoil energy of the escaping electron for
the second excited state are shown in Figures 3.21, 3.22 and 3.23 together with the
best linear fits. It can be recognized, that the linear fit for the mean value worked
fine. The amplitude and the width have been fitted linearly as well. The width
does remains approximately constant in the linear fit. The parameters slope and
interscept can be seen in Table 3.7.2.
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Figure 3.15: Final State Probability Distribution of the second excited state as
calculated with the code of Saenz corresponding to β electron energies of 18.6, 16,
14 and 12 keV. The distributions get shifted slightly to lower excitation energies.
The height of the FSD grows slightly for decreasing βenergies.
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Figure 3.21: Amplitude of the gaussian distrubutions for the second excited state
n=3 plotted vs the recoil energy of the escaping electron. A linear fit has been
applied.
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Figure 3.16: Final State Probability Distribution of the first electronically excited
state n=2 for a 18.6 keV electron as calculated with the Code of Saenz and a gaussian
fit to the distribution.
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Figure 3.22: Mean Value of the gaussian distributions for the second excited state
plotted against the recoil energy of the escaping electron. A linear fit has been
applied.
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Figure 3.17: Amplitude of the Gaussian distribution for the first electronically ex-
cited state. Similarly to the bahaviour of the energy-dependent groundstate FSD,
the amplitude increases with decreasing recoil energy. A linear Fit was applied to
this.
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Figure 3.23: Width of the gaussian distributions dependent on the recoil energy of
the escaping electron. A linear fit has been applied.
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Figure 3.18: Mean of the Gaussian distribution for the first electronically excited
state. Similarly to the bahaviour of the energy-dependent groundstate FSD, the
mean value of the gaussian decreases with decreasing recoil energy. A linear fit was
applied.

Parameters (n=3 gaussian) slope interscept
amplitude -5.3198e-05 0.02105239
mean value 0.16610911 32.1771279
width -0.00261947 4.62130099

Table 3.5: Parameters slope and interscept of the linear fits applied to the energy-
dependent behaviour of the gaussian parameters corresponding to the second excited
state FSD.

Together with this, a simplified way is found to describe the energy-dependence of
the Final State Probability Distribution corresponding to the first five electronically
excited states. The parameters are dependent on the recoil energy of the escaping
electron yielding a gaussian for both the first and the second excited state. The
sum of these two gaussians results in the Gaussian Excited FSD (GE-FSD) as can
be seen in Figure 3.24
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Figure 3.19: Width of the Gaussian distribution for the first electronically excited
state. Similarly to the bahaviour of the energy-dependent groundstate FSD, besides
a small deviation for 16 keV, the width of the gaussian decreases with decreasing
recoil energy. A linear fit was applied.
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Figure 3.24: Gaussian Excited FSD (GE-FSD) for several energies below 18.6 keV.
The whole distribution gets shifted slightly to lower excitation energies for decreas-
ing recoil energy of the escaping electron as expected. As well an increase in the
amplitude can be seen for decreasing recoil energy.
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To see the differences between both FSDs, the absolute difference of the differen-
tial decay rates including energy-dependent FSD, which consists of the gaussian
model for the groundstate and the first five excited states, an unchanged electronic
continuum and the energy-dependent atomic tail, and the FSD calculated by Saenz

∆Γ =|
(
dΓ

dE

)newFSD
−
(
dΓ

dE

)DossFSD
| (3.70)

are shown in Figure 3.25.
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Figure 3.25: The absoulte difference between the energy-dependent FSD beta-
spectrum and the spectrum with final states caluclated by Saenz. For electron
energies near the endpoint the absolute difference goes to zero.

The absoulte difference goes to zero for energies near the endpoint of the decay
spectrum. This means, that the gaussian model of the FSD fits fine with the exactly
calculated FSD. For lower energies, the difference increases. This is due to the fact,
that the probability distribution shifts to lower energies in the gaussian case, whereas
the exactly calculated remains.
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Conclusion

A simplified model for an energy-dependent final state probability distribution cor-
responding to β energies down to 12 keV has been developed. The FSD itself is split
into four parts: the groundstate, the first five electronically excited states, the con-
tinuum and the high energy range, which can be described by an energy-dependent
atomic tail [8]. The electronic continuum has for simplicity been assumed to remain
unchanged for decreasing energies. To get a model for the energy dependence of the
groundstate, the method in [1] was used, which describes the rovibrational broad-
ened groundstate of the FSD as a gaussian distribution with a standard deviation
dependent on the zero-point motion of an slightly anharmonic oscillator and the
recoil energy of the daughter molecule. For lower energies, the Gaussian distribu-
tion got shifted to lower excitation energies and got narrower due to the decreasing
recoil energy. Taking the mean recoil energy ( averaging over the angles θ = π
and θ = 0 and neglecting angles between) was a justified assumption, since the
probability distribution for different emission angles is approximately uniform. To
get an energy-dependent description for the excited FSD, the probability distribu-
tions for the first two electronically excited states have been calculated exactly for
18.6, 16, 14 and 12 keV using Saenz’ Code. The evaluated distributions have been
fitted by gaussians. The parameters amplitude, width and mean value have then
be described dependent on the energy of the escaping electron yielding an energy-
dependent description of the excited FSD down to 12 keV. Further work in this
area would include developing a model for the electronic continuum as well as going
down to lower energies and study the behaviour of the FSD.
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Appendix

Calculation of the FSD using Saenz’ Code

In order to calculate the Final State Probability Distribution for the first and second
electronically excited state, two codes written by Saenz et al. in FORTRAN were
used. The first code to use is the so called ”nucfix” file. This code is used to calcu-
late the nuclear wavefunction of both the initial and the final molecule in the decay
process. In order to run it, at least four input parameters are required, optionally
five. The first input parameter is the molecule, whose nuclear wavefunction will be
calculated. The second argument is the B-Spline Basis set used to numerically solve
the nuclear part of the Schrödinger equation (in the Born-Oppenheimer approxi-
mation). The content of the B-Spline input file can be seen in Figure 3.26 for the
3HeT+ molecule.

The parameters given in this file are the masses of the atoms bound in the molecule,
the range of rotational quantum numbers for which the nuclear Schrödinger equa-
tion needs to be solved and the properties of the B-Spline Basis set (box size, order,
number of splines and knot sequence). The third argument is the electronic state,
that the orbital electron should populate. Calculating the nuclear wavefunction for
the initial tritium molecule, the electron was chosen to be in its total groundstate
(electronic, rotational and vibrational groundstate). In the case of the daughter
3HeT+ molecule, the first and the second electronically excited state were chosen.
The fourth argument is the input file denoting the properties of the used potential
curves.
As described in the section about the Born-Oppenheimer approximation, the nu-
clear part of the Schrödinger equation is dependent on the electronic eigenvalues
- the potential curves. In this input file, the eigenvalues for different internuclear
separations are specified. The fifth argument of the nucfix code is concerning either
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Figure 3.26: The input file concerning the B-Spline Basis set used to numerically
solve the nuclear part of the Schrödinger equation. The parameters given in this
file are the masses of the atoms bound in the molecule, the number of rotational
quantum numbers, for which the nuclear wavefunction needs to be calculated and
the data concerning the B-Spline Basis set (box size, order, number of B-Splines
and knot sequence).

the memory-optimized run of the code, the renormalization of the continuum wave
functions or if the wavefunctions should be expanded on a finite radial grid.
Running the nucfix code for the initial and the final states molecules, on can proceed
to the calculation of the transition probabilities using the so called ”rovib trans”
file. To run this code, eleven arguments are needed. The first one is the file con-
taining the eigenvalue and eigenstates of the initial molecule, as calculated before
using the nucfix code. The second parameter is the B-Spline basis set file used to
get the nuclear wavefunctions. The third parameter is the file containing the eigen-
value and eigenstate of the final molecule. In the fourth parameter, the input file of
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the B-Spline Basis set corresponding to the final state molecule is given. The fifth
parameter states the rotational quantum number of the initial molecule (which is
chosen to be zero, since we want our initial molecule in its total groundstate). The
sixth parameter denotes the vibrational state of the initial molecule, which is also
set to zero. The 7th argument needed is the rotational quantum number of the final
state molecule. The 8th parameter denotes the number of points used for coupling
spline interpolations. In the 9th parameter, one is able to tell, if a continuum renor-
malization is needed, and if, for the initial, the final state or for both molecules.
The 10th arguments is referring to the electronic overlap. As seen in the section
about the derivation of the transition probability, the electronic wavefunctions are
not needed to perform the calculation of the nuclear wavefunctions. The matrix ele-
ment itself can be split into a matrix element for the nuclear wavefunctions and one
for the electronic ones. The electronic overlaps have been calculated before. In the
11th parameter, one can state the recoil momentum of the beta electron in 1/a.u.,
where a.u. denotes atomic units. This allows us to perform the energy-dependent
calculations of the Final State Probability Distribution. The output file resulting
from that can be seen in Figure 3.27.

Figure 3.27: Part of the Output File of the rovib trans code for the transition
probabilitiy from the initial tritium molecule to the the daughter molecule in its
first electronically excited state with a rotational quantum number 0 corresponding
to a 18.6 keV electron.

The important columns are the second and the fourth column. The second column
denotes the excitation energy in Hartree with respect to the groundstate energy
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of the 3HeT+ molecule. The fourth columns stands for the probability density.
In order to produce a plot showing the Final States Probability Distribution of
a certain electronically excited state as can be seen in the previous chapter, the
excitation energies need to be converted to eV as well as the probability density
from %/Hartree to %/eV. Additionally, the probability densities for the different
final rotational quantum numbers need to be summed.
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