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Abstract

The KATRIN Experiment strives to improve the knowledge of the effective electron
anti-neutrino mass, by determining it with a sensitivity of 200 meV at 90 % C.L.

This master’s thesis gives an insight into a new analysis software for the KATRIN
Collaboration, SAMAK, and applies it to analyze the first KATRIN tritium data. Special
focus is given to the estimation of tritium gas density in the windowless gaseous tritium
source of KATRIN, and the determination of the effective endpoint of the tritium β-
decay spectrum, where it is shown that an exhaustive understanding of the systematic
uncertainties is critical for the correct interpretation of the experimental results.

Furthermore, SAMAK is used to perform sensitivity studies on the neutrino mass
using the most updated information on the background of the experiment. Lastly,
SAMAK participated in a series of validation processes called “data challenges”, where
analysis results where compared among different analysis packages within the KATRIN
Collaboration.
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1 Introduction

In this thesis, three concepts are mentioned recurrently throughout: KATRIN, SAMAK
and the First Tritium Campaign. I want to introduce them casually to the reader here,
so that they become familiar early on and the information presented hereafter can be
more fluently followed.

1.1 KATRIN and neutrinos

KATRIN stands for KArlsruhe TRItrium Neutrino (Experiment). It is a large Neutrino
Physics Experiment, around 70 m in total length, located very close to Karlsruhe,
Germany, whose main objective is to find the effective mass of the electron antineutrino,
or set upper limits to it. Parallel to or after the main KATRIN measurements, other goals
are to provide new information about sterile neutrinos in the eV and keV range (for a
mass smaller than the endpoint of the tritium spectrum), about the tritium spectrum
itself (endpoint, Final States Distributions), and to confirm the effectiveness of new
technology. This is the experiment whose data I analyze in this thesis. More details
about the experimental set-up are in chapter 3.

The neutrino is a neutral particle first proposed by W. Pauli in 1930 [Pau], as a product
of the β-decay. It only interacts through gravity and the weak interaction. At first,
it seemed convenient to treat is as a massless particle, but relatively recently, around
the year 2000, several experiments indicated that neutrinos undergo a phenomenon
called “neutrino oscillations” [Ahm+02], which means they have a mass, even if small
compared to other elementary particles.

The probability of the neutrino interacting with other particles is relatively low, so
that it is possible for a neutrino to go through one light-year1 of lead without interacting
[Dav87]. For this reason, neutrinos have been dubbed the “ghost particles”. More on the
history and physics of the neutrinos in chapter 2.

Discoveries that have something to do with neutrinos have the potential to be quite
important in fundamental physics. At least four Nobel Prizes (as of 2018) have been
awarded to research about neutrinos [AB18]; and they are one of the keys to unravel
physics beyond the Standard Model.

19.46×1015m or some 800 times the size of the solar system (average distance Sun to Pluto [NAS15]).
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1 Introduction

1.2 SAMAK Analysis Software

SAMAK stands for Simulation and Analysis with MATLAB® for KATRIN. It is a software
package written in (of course) MATLAB® by Dr. Thierry Lasserre from CEA Saclay. Its
purpose is to do analysis for KATRIN. It can simulate the tritium spectrum as well as
fit the data generated by KATRIN. SAMAK has been greatly developed since I started
working with the code more than one year ago, and every now and then a new feature
is added, making it more robust and complex. The coding in MATLAB® is relatively
flexible, so it is not hard to implement new corrections and add components. In this
way, SAMAK can be used to give results in a short time frame and help guide the
experimental procedures and further analytic efforts.

I have assisted in the development of some fragments of the code, which will be
mentioned in this thesis. Some of the items I have worked with are the implementation
of the Doppler Effect, the display of the Focal Plane Detector view, reading KATRIN
data (HDF5 and/or Run Summaries), parallelization, use of a minimizer that can handle
more than 150 parameters for multipixel fits, flexibility to change between different
analysis types (single-pixel, multipixel, etc.), technical work on the storage and handling
of the response function of KATRIN, standardizing the fitting procedure, and some
work to move SAMAK to the Git version control system. More details on the tritium
model in SAMAK are in chapter 4, on the fitting in chapter 6, and types of analysis in
chapter 5.

1.3 First Tritium Campaign

The First Tritium Campaign is a period of two weeks in Spring 2018 where tritium was
injected in the KATRIN Source. After many years (the Design Report of KATRIN dates
back to 2004) of planning, building, doing simulations, fine-tuning of components, etc.,
real measurements using tritium were done for the first time. Although the conditions
were to some extent different to what is planned for the three-year measurement period,
the First Tritium Campaign delivered very nice and useful results; both to test and
confirm the correct functioning of the hardware, and to test and further develop the
different analysis tools. More material related to the First Tritium Campaign can be
found in chapter 9.

1.4 Thesis Outline

First I present a summary of the history and phyiscs of the neutrino. I then explain the
KATRIN Experiment, followed by how the tritium β-decay spectrum is built in SAMAK.
Afterwards I turn my attention to the explanation of the analysis and statistical methods
used in SAMAK. Finally I present some applications of SAMAK, i.e. sensitivity studies,
Data Challenges and diverse analysis using the data from the First Tritium Campaign.
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2 Neutrino Physics

Since their postulation almost 90 years ago, neutrinos have been involved in the develop-
ment of new physics, expanding our knowledge of nature, and defying some established
physical theories and concepts.

Knowing and understanding something is good, but being actually on the way of
understading it, is more interesting. Physicist who study neutrinos are for sure in this
path. Dark Matter candidates (through sterile neutrino [Boy+18]), absolute neutrino
mass [Col05], multimessenger astronomy1 and production of cosmogenic neutrinos
(recently found by IceCube [Col+18]), and communication using neutrinos [Sta+12] are
just some of the unresolved topics relating to neutrino physics.

In the next chapters I follow historically the origins of the development of neutrino
physics in sec. 2.1. Afterwards, in sec. 2.2, I expose the mathematical description of
neutrino oscillations; and in secs. 2.3 and 2.4 we have a look at the theory of the absolute
neutrino mass, and the limits that have been set on it so far.

2.1 Discovery of the neutrino

2.1.1 The particle of Wolfgang Pauli

Figure 2.1 | Radium β-decay. β-decay
energy spectrum of the emitted elec-
tron from radium decay, from [Sco35].

It all started in the prelude of winter in 1930 near
the Alps. There, Wolfgang Pauli wrote the decisive
letter that would give the world a new elementary
particle to think about [Pau]. Previously, experi-
ments regarding β-decays had shown unexpected
results. At that time, the β-decay was thought to
be a two-body decay, which would result in a peak
in the energy spectrum of the emitted β-electron.
It turned out that the spectrum of the β-decay elec-
tron was a continuous one, for example that of
radium in fig. 2.1 [Sco35]. Wolfgang P. came up
with the idea that there was a third particle in the
β-decay game, making it a three-body decay. This
particle should be electrically neutral, with spin 1/2, should obey the exclusion principle,
and could not travel as fast as light. This particle would solve the conundrums posed by
the continuous β-decay spectrum, namely the violation of conservation of energy and

1Observations done with electromagnetic radiation, gravitational waves, cosmic rays and neutrinos.
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2 Neutrino Physics

spin. He arbitrarily named this particle the “neutron”. Two years later a neutral particle
was discovered and named neutron, but it was too massive to be the one suggested
by Wolfgang P. Two more years passed, and Enrico Fermi coined a new term for that
particle: “neutrino” [Fer34], meaning “little neutron” in Italian (probably since it was
less massive than the neutron). The formula describing the β-decay is then

n→ p + e− + ν̄e (2.1)

where n is the neutron, p the proton, e− the electron, and ν̄e represents the electron
anti-neutrino.

2.1.2 Neutrinos Flavors

Electron neutrino

Figure 2.2 | Cowan and Reines detection of the neu-
trino. Events with a delay of 2.5 µs, the first pulse has
energies of 0.3 and 0.35 MeV. The second pulse has ener-
gies of 5.8 and 3.3 MeV. Figure from [Rei+60].

C. Cowan and F. Reines were
the first to detect a neutrino
[Cow+56], using the inverse β-
decay

ν̄e + p→ n + e+, (2.2)

where a neutron and a positron
e+ are produced. The experiment
was set near the Savannah river
nuclear power plant. The detec-
tor they used was a series of liq-

uid scintillator tanks separated by cadmium-loaded water targets. The expected signal
was very clear and could not be confused with other events. In the reaction, the positron
created annihilates with an electron producing two γ-rays with energy Eγ = 511 keV
each. Between 0.75 and 30 µs later, the neutron thermalizes and is captured by the
cadmium, which decays emitting γ-rays. An example of a valid β-decay signal recorded
is in fig. 2.2. Reines was awarded the Nobel Prize in 1995 for this experiment, by which
time Cowan had already passed away.

Muon neutrino

Using the decay of pions π+ into muons µ+ and muon neutrinos νµ

π+ → µ+ + νµ, (2.3)

L.M. Lederman, M. Schwartz and J. Steinberger detected the muon neutrino in 1962
at the Brookhaven Alternating Gradient Synchrotron (AGS) [Dan+62]. During several
months, around 3.5 ×1017 protons hit a beryllium target, producing pions in the process.

4



2.1 Discovery of the neutrino

The pions decayed into muons and muons neutrinos. All particles except the neutrinos
were stopped by a steel wall, leaving a “neutrino beam” in direction of a spark chamber.
Occasionally one of the neutrinos would interact with a proton in an aluminum nucleus,
producing a neutron and an electron or muon. Since only muons were detected in
the spark chamber, it was concluded that the neutrinos produced in the reaction were
different from the electron neutrinos (otherwise, electrons and muons would have been
produced in equal quantities). For this finding, the Nobel Prize was awarded in 19882.

Tau neutrino

Figure 2.3 | Z boson 91 GeV resonance. Cross-section for
e+ + e− → hadron in dependence of center of mass energy.
The fitted curve is a result of a three parameter fit. Shown are
the curves for one, two and three neutrino species, and the best
fit at 3.27± 0.3. Figure from [DeC+89].

The tau neutrino was quite
more elusive than the other
two. It was not until the
new millennium that it could
be found. In 2000 in the
DONUT (Direct Observation
of Nu Tau3) Experiment in
Fermilab [Kod+01], a proton
beam was fired at a tungsten
target, which created a parti-
cle shower. Some of the par-
ticles were taus, which de-
cayed into, among other par-
ticles, tau neutrinos.

All but the tau neutrinos
were stopped using a dedi-
cated shield. The tau neu-
trinos entered an emulsion
lead target were they inter-
acted with neutrons to pro-
duce protons and taus. The
latter leave a short track in
the emulsion due to their
short half life, producing a characteristic signal with which they can be identified.

Just three neutrino flavors

Since 1989, the ALEPH Experiment had already determined that there were only three
neutrino flavors [DeC+89]. The proof is the invisible width of the Z Boson resonance
at 91 GeV, which is seen as a peak of the total cross section of the electron positron

2Curiously 7 years before the Nobel Prize for the electron antineutrino.
3Clever selection of words.

5



2 Neutrino Physics

scattering. It depends on the number of neutrinos flavors available, and the best fit (fig.
2.3) excludes the possibility of more than three neutrino flavors.

2.2 Neutrino oscillations

The fact that neutrinos oscillate, meaning that they can be detected in a different flavor
from the one in which they were produced, proves that they are outside of the successful
Standard Model. They also invoke the necessity of neutrinos having a non-zero mass,
since the mass eigenstates must be different (so not all of them can be zero). First
suggested by Pontecorvo in 1957 [Pon57], it was not until 2002 that they were finally
confirmed by the SNO Experiment.

Solar neutrino problem

Figure 2.4 | Neutrino interactions in SNO. Pos-
sible interactions with the charged and neutral
current between neutrinos, quarks, and leptons,
in the SNO Experiment. Figure from [Nav16b].

Neutrinos are produced in the sun via
the pp-chain and CNO-cycle. Since 1970
the neutrino flux from the sun has been
measured by several experiments in dif-
ferent time periods. The first one was the
Homestake Experiment [Cle+98], which
encountered a neutrino rate lower than
expected by the Solar Standard Model4.
These findings were confirmed in the fol-
lowing years by several other experiments,
namely (in parenthesis the date of publica-
tion) Gallex/GNO (2005) [Alt+05], SAGE
(2002) [Abd+02], and Kamiokande (1996)

[Fuk+96]. This problem was definitely considered solved by the Sudbury Neutrino
Observatory (SNO) [Ahm+02], which contained 1 kiloton of heavy water D2O. SNO
took advantage of the interaction of all neutrinos flavors with deuterium through the
neutral current. The measured reactions were

νe + n + p→ e− + p + p (charged current) (2.4)

νx + n + p→ νx + n + p (neutral current) (2.5)

νx + e− → νx + e− (elastic scattering), (2.6)

where νx is any type of neutrino, p are protons, n are neutrons and e− are electrons
(fig. 2.4). The total measured flux from all three neutrino flavors was consistent with
the Solar Standard Model. Thus, neutrino oscillations were confirmed and the solar
neutrino problem was solved.

4For an overview of the Solar Standard Model, see for example [Tur16].
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2.2 Neutrino oscillations

2.2.1 Brief theoretical description

Neutrino undergo oscillations because their flavor eigenstates and mass eigenstates are
not tantamount, and can be represented in either of the two bases. The flavor eigenstates
are the ones that participate in the weak interaction through the coupling to the W and
Z bosons; the mass eigenstates are the ones traveling through spacetime.

Now, it is appropriate to introduce the famous Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix U, that relates the flavor eigensates νe, νµ, ντ to the mass eigenstates
ν1, ν2, ν3 of the neutrino, νe

νµ

ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 ν1

ν2

ν3

 . (2.7)

It can be parametrized by three mixing angles θij and a complex Dirac phase δD, and
if the neutrinos were Majorana particles (their own antiparticles), there are two extra
complex Majorana phases δM.

U =

 1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e−iδD

0 1 0
−s13eiδD 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


 eiδM1 0 0

0 eiδM2 0
0 0 1

 ,

where cij = cos θij and sij = sin θij.
Concepts are normally made clearer with examples, so let us take the case of the

creation of an electron neutrino at time t = 0,

∣∣ν(t = 0)
〉
= |νe〉 = Ue1 |ν1〉+ Ue2 |ν2〉+ Ue3 |ν3〉 . (2.8)

As time progresses t > 0, the neutrino evolves as plane waves5

∣∣ν(t > 0)
〉
= Ue1e−iE1t |ν1〉+ Ue2e−iE2t |ν2〉+ Ue3e−iE3t |ν3〉 , (2.9)

which is no longer an electron neutrino, but a superposition of all flavor states.
Therefore, there is a probability of the neutrino interacting weakly (and being detected)
as another flavor. This probability P can be used in experiments to determine the
oscillation parameters, and it is given by

P(να→β(t)) = |
〈

νβ

∣∣∣να

〉
|2, (2.10)

where α and β are any two different flavor eigenstates. One can also express the mass
eigenstates in terms of the flavor eigenstates

5In eq. 2.8, |νi〉 , i = 1, 2, 3 are eigenstates of the Hamiltonian, whose eigenvalue is Ei =
√
~pi

2 + m2.
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2 Neutrino Physics

|να〉 = ∑
i

Uαie−Eit |νi〉 (2.11)

= ∑
i

Uαie−Eit

 ∑
β=e,µ,τ

U∗β
∣∣∣νβ

〉 (2.12)

= ∑
β

(
∑

i
Uαie−EitU∗iβ

) ∣∣∣νβ

〉
. (2.13)

Combining eqs. 2.10 and 2.13, one obtains

P(να→β(t)) = Pαβ(t) = |∑
i

Uαie−EitU∗iβ|2 (2.14)

= ∑
ij

UαiU∗iβU∗αjUjβe−i(Ei−Ej)t. (2.15)

If one makes the assumption that the neutrinos travel close to the speed of light, and
thus are ultrarelativistic, so pi = p = E and t = L leaving as a result

Pαβ(L/E) = ∑
ij

UαiU∗iβU∗αjUjβe−i∆m2
ij

L
2E . (2.16)

Considering only two neutrinos to simplify things, for example νe and νµ the proba-
bility can be given by the uncomplicated form

Pνe→µ = sin2(2θ12) sin2

(
∆m2

12L
4E

)
. (2.17)

The above equation shows how the amplitude on the oscillation probability depends
on the mixing parameters, and the frequency is given by the difference of the squared
neutrino masses. Also important to note is that experiments that study neutrino
oscillations can only make an statement on the difference of the squared neutrino
masses, but not on the absolute value of them. At most, they can give a lower limit on
one of the masses.

Mass hierarchy

From the oscillation experiments, one cannot know the sign of the mass difference
∆m2

13. Therefore it is unclear if the masses have a normal hierarchy (m1 < m2 < m3)
or inverted hierarchy (m3 < m1 < m2). This phenomenon will be investigated by the
IceCube-PINGU Experiment [Win13].
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2.3 Neutrino mass

2.2.2 Neutrino Oscillation Experiments

All parameters of the PMNS matrix have been determined experimentally, except for the
Majorana terms. The angle θ12 “solar mixing angle” was determined using a mixture
of solar and reactor neturinos [Abe+11]; the angle θ13 “the reactor mixing angle” was
calculated independently by three experiments Double-Chooz [Abe+12a], Daya bay
[Abe+12b] and RENO [Ahn+12]; and the angle θ23 (“atmospheric mixing angle”) was
determined by the Super-Kamiokande Experiment [Wen+10].

The most recent fit results provided in NuFIT (supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 674896 “ELUSIVES”) is given in [Est+17], and can be seen in fig.
2.5.

Figure 2.5 | Oscillation parameters. Three-flavor oscillation parameters from the fit to global
data after the NOW 2016 and ICHEP-2016 conference from [Est+17]. Table from [Est+17].

2.3 Neutrino mass

With the discovery of neutrino oscillations it was confirmed that neutrinos should have
a mass, but the mechanisms through which it can be obtained it are yet unclear. As a
reminder, the upper limit on the neutrino mass [Lob+01] [Kra+05] is in the order of
a few eV, five orders of magnitude smaller than the lightest charged lepton. To have
the neutrino gain mass via the Higgs mechanism like the rest of the particles in the
Standard Model, one would have to fine tune the parameters in the Yukawa coupling,
which might be suspicious and is normally avoided in the physics community, but
still possible. One should also introduce a right-handed neutrino νR, which could only

9



2 Neutrino Physics

interact through gravity, also called “sterile neutrino”. If the neutrino gets its mass this
way, it would be called a Dirac particle.

Another popular possibility is the “Seesaw mechanism”, in which the neutrino is
assumed to be its own antiparticle, otherwise known as Majorana fermion. In that case,
after introducing a right handed neutrino field with the mass term in the Lagrangian,
the mass eigenstates from the matrix [

0 mD

mD M

]
, (2.18)

have eigenvalues m1 ≈ M and m2 ≈ m2
D/M, if M � mD. If m1 is larger, m2 turns

smaller. For a neutrino mass in the eV range, the right handed neutrino mass should be
of the order of GeV.

2.4 Limits on the neutrino mass

There are several procedures through which one can constrain the absolute value of the
neutrino mass. Some depend on physical models, and some are independent, working
only with kinematics. In this section I give an overview of the current limits set using
different approaches.

2.4.1 Cosmology

The ΛCDM-Model dictates that the universe started out as an incredible dense and hot
mix of particles confined in a small space. It started expanding at the Big Bang, and
has not stopped since then, cooling down in the process. The particles in the mix can
interact as long as their mean free path is smaller than the horizon size of the universe.
As the universe expands and cools, the mean free path of all particles gets larger, at
different rates. Each time the mean free path of a particle reaches and surpasses the
horizon size of the universe, a process called “decoupling” occurs, in which the particles
can stream freely.

The decoupling with the strongest evidence is the photon decoupling, leaving an
important imprint known as the Cosmic Microwave Background Radiation (CMB) first
discovered by Penzians and Wilson in 1965 [PW65]. That imprint of electromagnetic ra-
diation in the microwave length which has a mean temperature of 2.7 K, with differences
in the order of tens of µK.

Similarly, the neutrinos also had a decoupling, about 1 second after the Big Bang. The
estimated density of this “relic neutrinos” is about 336 cm−3, making it the second most
abundant particle in the universe. Even if they had small masses, due to their density,
the relic neutrinos could have an impact in the energy density of the universe [LP06].

The energy density Ων from neutrinos can be expressed as

Ων =
∑i mν,i

93.14h2 eV
, (2.19)
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2.4 Limits on the neutrino mass

where h is the dimensionless Hubble parameter [LP12]. The upper limit calculated
fro this energy density by [Col+14] is

∑
i

mν,i ≤ 0.23 eV (95%C.L.). (2.20)

One should be careful with this result though, as it is based on cosmological models,
which, even if carefully thought and analyzed, could be inaccurate.

2.4.2 Double-beta decay

If the neutrinos are Majorana particles, then in principle it is possible for the following
reaction to occur

2n→ 2p + 2e− (2.21)

where the two neutrinos that should have been created, interacted as shown in fig.
2.6. This rare decay process is called neutrinoless double β-decay (0νββ). If measured,
besides proving that the neutrino is its own antiparticle, it would also show that lepton
number conservation is violated, which is definitely outside the realm of the Standard
Model.

Figure 2.6 | 0νββ. Feynman diagram for the
standard mechanism of neutrinoless double β-
decay. Figure from [PR15].

There are several experiments look-
ing for a signal for this kind of decay
[Hen16], for example GERDA or the MA-
JORANA DEMONSTRATOR using 76Ge,
or KamLAND-Zen using 136Xe. An ef-
fective neutrino mass could be extracted
from the results of this experiment by the
relation

Γ0νββ ∝ mββ = |∑
i

E2
eimi|, (2.22)

where Γ0νββ is the rate of this decay pro-
cess.

The lifetime of this decay was been mea-
sured by GERDA to be 3× 1025 years (90
% C.L.), which entails a mββ of 0.2 to 0.4
eV [Ago+13]. Again, this value relies on
decay models and the assumption that the

neutrino is a Majorana particle, so one should be cautious with it.
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2 Neutrino Physics

2.4.3 Single-beta decay

The single beta decay relies only on kinematics and energy-momentum conservation,
therefore it is the least model dependent method to estimate the value for the neutrino
mass. The latest reported values are the ones by Troitsk and Mainz where the upper
limit for the neutrino mass was established at 2.3 eV at 95 % C.L by Mainz. A detailed
description of how the neutrino mass can be extracted from the single β-decay of tritium
can be found in sec. 4.1.
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3 The KATRIN Experiment

The main objective of the KATRIN (KArlsruhe TRItium Neutrino) Experiment is to
determine or set new upper limits to the effective electron antineutrino mass. It will do
so by using high precision spectroscopy in the zone near the endpoint E0 of the tritium
β-decay spectrum, where the distortion of the spectrum by the neutrino mass is most
prominent, see fig. 3.1.
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Figure 3.1 | Tritium β-decay spectra with two
different neutrino masses. Two tritium β-decay
spectra near the endpoint are shown. The red
line is the spectrum with a neutrino mass of 0 eV,
and the blue line is the spectrum with a neutrino
mass of 1 eV.

The original design for KATRIN in
2004 envisioned a sensitivity for the neu-
trino mass of 200 meV with 90 % confi-
dence level after three years of data taking
[Col05], improving the last value found
in the literature [Kra+05] [Lob+01] by one
order of magnitude. This number was set
assuming a background level of 10 mcps,
and a systematic budget of 0.017 eV2 at-
tributed to the neutrino mass squared.

In the next sections I will give an
overview of the workings of the KATRIN
Experiment. Given that the KATRIN Ex-
periment has been thoroughly explained
in the Design Report [Col05] and in count-
less master’s and PhD theses, I rather give
the reader a leisure walk through the ex-
periment from back to front (source to
detector), seen in fig. 3.2, and focus on the

most relevant elements for the present work.

3.1 Measurement principle and set-up

The measurement technique used in KATRIN is the MAC-E filtering, short for Magnetic
Adiabatic Collimation with Electrostatic filtering. The MAC-E Filter uses an electrostatic
filter to only allow electrons from the source, with energies higher than a given retarding
potential, to reach the detector. In this sense it is a high-pass filter. The “magnetic” part
of the name comes from the fact that the β electrons are guided magnetically through the
experiment by superconducting magnets. The magnetic fields also help to increase the
count rate by adiabatically changing the direction of the momentum of the β-electrons
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3 The KATRIN Experiment

Source (WGTS)

Transport Section

Pre-spectrometer

Main spectrometer

Detector

Mainz former spectrometer

Rear Section

Figure 3.2 | KATRIN Experimental set-up 2018. Depiction of the complete KATRIN setup as
of 2018. The main sections are highlighted. Figure from the KATRIN Collaboration.

(sec. 4.4.1). This technique allows for a good energy resolution near the endpoint.
Since it only relies on the kinematics of the tritium β-decay, it is considered as model
independent.

3.1.1 Rear Section

The rear section will house two Differential Pumping Sections to return the gaseous
tritium to the outer loops. Furthermore, this section will have a Calibration and
Monitoring System (CMS). The CMS will accomplish the tasks described in the following:

• Calibrate the detectors with the use of a 83mKr source.

• Investigate the transmission function (sec. 4.4.1) of the system and the energy
dependence of the inelastic scattering cross section by the use of an electron gun
with high resolution (around 0.2 eV).

• Define the electric potential of the source.

• Determine the β-electron flux with a monitor detector.

3.1.2 Windowless Gaseous Tritium Source

As the “TRI” in KATRIN indicates, tritium, the isotope of hydrogen with two neutrons,
was chosen as the β-electron emitter. The decay for atomic tritium is as follows

3
1H→3

2 He+ + e− + ν̄e. (3.1)

In KATRIN, however, molecular tritium is used, so the decay can be one of the
following three

TT→ (3
2HeT)+ + e− + ν̄e, (3.2)
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3.1 Measurement principle and set-up

TD→ (3
2HeD)+ + e− + ν̄e, (3.3)

TH→ (3
2HeH)+ + e− + ν̄e, (3.4)

where T represents 3
1H (tritium), D represents 2

1H (deuterium), and H is just hydrogen.
Each molecule produces a slightly different spectrum with a different endpoint due to
different Final States Distributions, atomic masses and binding energies (see sec. 4.2).
The plan is to have a molecular concentration of 90 % of TT, 5 % of DT and 5 % of HT
[Col05]. This means that the atomic concentration (ratio of atoms of tritium to the total
number of atoms) of tritium in the gas composition will be of 95 %, as DT and HT only
contribute with half of tritium.

Tritium has already demonstrated in the past to be a good candidate for the determi-
nation of the neutrino mass [Kra+05] [Lob+01], and there are several good reasons for
this choice. First of all, from the differential decay rate (eq. 4.16), one can see that the
relative number of electrons with energies close to the endpoint decreases with the value
of the endpoint. The rate scales as E−3

0 . Moreover, a low endpoint energy facilitates the
technical implementation of the high voltage in the electrostatic filter. Molecular tritium
has the second lowest endpoint of the β-electron emitters [Sle16] at E0 ≈ 18.6 keV.

Tritium can be kept in a gaseous form at the operating temperature of KATRIN,
which is around 30 K [Col05]. One of the reasons this low temperature was chosen is
to diminish the influence of the Doppler Effect, that would alter the energy resolution.
Also gaseous tritium has lower systematic uncertainties in general.

Tritium β-decay is a superallowed transition1, consequently the nuclear matrix element
is independent from β-electron energy and the half-life of tritium is short, compared
to other decaying elements, at 12.3 years. The latter allows to have a high luminosity2

with relatively low density. The molecular density in the source impacts the scattering
probabilities of the electrons traveling through the tube: as the density increases, the
scattering probabilities also increase. The atomic number also affects the scattering
probabilities but in an inverse fashion. In that sense, tritium has relatively less scattering,
a consequence of the atomic number being equal to one. More scatterings lead to more
energy loss and hence less electrons can go through the spectrometer, decreasing the
statistics.

Finally the low Z value of tritium leads to a less complex nuclear structure compared
to elements with more nucleons (which are almost all of the rest in the periodic table).
This in turn makes the electronic final states relatively easy to obtain, and other atomic
corrections affecting the tritium β-decay spectrum can be computed to a high precision
(sec. 4.2).

1This happens when the mother and daughter are mirror nuclei of the same isospin doublet, where a
large overlap of initial and final wave functions occur.

2One should have in mind that the number of decays is N(t) = N0(
1
2 )

t
t1/2 , so a smaller half-life leads to

more decays on a shorter period of time.
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3 The KATRIN Experiment

Windowless Gaseous Tritium Source

Figure 3.3 | Schematic view of the WGTS. The gas
entres from the middle, indicated as “source tube”,
and goes to the pumping sections at both ends. Fig-
ure from [KAT99].

The tritium gas is injected in the KA-
TRIN Experiment through the mid-
dle of a section named Windowless
Gaseous Tritium Source (WGTS).
The WGTS is a 10 m long tube with an
inner diameter of 90 mm, in which the
tritium molecules diffuse to both ex-
trema, and are collected at both ends
by Differential and Cryogenic Pump-
ing Sections. These pumps take the
gas out of the experiment, clean it,
and return it to the WGTS, thus cre-
ating a closed loop.

The density of the gas inside the
WGTS is commonly referred as the
column density or ρd. The column
density is the non-linear gas density,
integrated over the length of the tube
[Sle16]. It is given in units of molecules/area.

One of the main challenges of the WGTS is to provide an ultra-stable source of
β-decays, both in space and time. This enables a much more precise analysis of the
data, by decreasing the systematic uncertainties. Let us list some of the most important
elements that have to be stable.

• The column density of 5× 1017 molecules
cm2 enables a β-decay rate of 1011 decays/s,

and has to be stable to a 0.01 % level, in relative.

• The temperature, once it acquires a value between 27 and 33 K, has to be kept in
a permille level, relative. This has already been achieved using a novel 2 phase
liquid neon thermosyphon [Gro+11].

• The pressure inside the WGTS affects directly the column density and also must
not have relative changes larger than 1 in 1000. A specialized pressurized control
vessel is used for this purpose.

• The isotopic purity of tritium should be high (>95 %) and be kept constant. The
spectra of the different isotopologues of the tritium molecule are slightly different,
so the isotopic composition of the gas should be very well known. The LARA
(LAser-RAman) system measures the relative concentrations of the isotopomers in
the gas every 200 seconds with a 0.1 % relative precision.

• The activity of the gas can also be measured independently by detecting the low
energy β-electrons from the source using the Forward Beam Monitor Detector
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3.1 Measurement principle and set-up

(FBM), again with 0.1 % relative precision. The FBM is a small pin diode that lies
close to the edge of the magnetic flux tube. A X-ray detector behind the rear plate
will measure the Bremsstrahlung of the electrons hitting the plate, giving another
handle on the source activity.

3.1.3 Transport Section

The transport section is in charge of retaining as much of the tritium gas as possible and
not letting it to the spectrometer section, while at the same time letting all β-electrons
go through with an adiabatic magnetic guidance. It achieves this goal by the use of two
different pumping sections, and a “chicane” structure3. The goal is to reduce the tritium
flow by at least 12 orders of magnitude, since tritium in the main spectrometer would
be translated into background, which has to be kept as low as possible.

Figure 3.4 | Differential Pumping Section.
The chicane can be clearly seen. Figure from
[KAT99].

The first pumping section, also used in
the rear of the experiment, is the Differ-
ential Pumping Section (DPS). The neu-
tral tritium molecules will hit the walls of
the tube because of the chicane structure,
formed by five tubes (each measuring 1 m)
that turn 20◦ each time, as seen in fig. 3.4.
The neutral molecules are then taken into
the outer loop by the use of turbomolec-
ular pumps (TMP). This already reduces
the flow by five orders of magnitude, ap-
proximately, from ≈ 3× 1017 to ≈ 3× 1012

molecules/s [KAT99]. Positively charged
ions produced mainly in the tritium decay
(eq. 3.1) are invulnerable to the chicane
and the TMB as they follow the magnetic
lines. That is why at the end of the DPS a slightly more positive potential is set.

After the DPS comes the Cryogenic Pumping Section (CPS), also following the
chicane set-up, but this time the angle is 15◦. This section uses the cryo-sorption
principle to trap the remaining tritium that went through the DPS. Argon frost at 6 K
covers the gold plated beam tube and the T2 are stuck to it. The argon is saturated in
around 60 days of operation, after that the valve to the main spectrometer is closed
and the tube is set to 100 K to release all of the trapped tritium, which is taken back to
the outer loop by the TMPs. This process gives an additional 7 orders of magnitude
reduction of the tritium flow (3× 105 molecules/s).

By the end of the pumps, then, the pressure in the pre-spectrometer and main
spectrometer is approximately 10−11 mbar.

3Chicane (from French) originally refers to a curvy part of a road used to slow down traffic.
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3.1.4 Pre-spectrometer

Figure 3.5 | Schematic view of all spectrometers in KATRIN. Detailed descriptions of each
spectrometer are in the text. Important to note are the sizes of each. Figure taken from [KAT99].

The main task of the pre-spectrometer is to stop the large bulk of low energy electrons
that carry no information on the neutrino mass. In principle, those electrons would be
anyways rejected by the main spectrometer, but a problem arises if they collide with
residuals molecules in the main spectrometer, because then the molecules could become
ionized and would contribute to the background. It is made by a 3.4 m long vessel with
1.7 m as diameter (fig. 3.5), and is set to a potential of about -18.3 keV, rejecting electrons
with energies lower than around 300 eV from the endpoint.

The pre-spectrometer is in many regards similar to the main spectrometer. Therefore
some tests, including the ultra high vacuum and the high voltage stabilization, were done
in the pre-spectrometer as early as 2003, before being applied to the main spectrometer.

3.1.5 Main Spectrometer

The main spectrometer is where electrons with neutrino mass information will be finally
rejected or accepted. This is the part where the spectrum with high definition is built by
the MAC-E Filter principle. The vessel measures 23.3 m in length and has a diameter of
9.8 m, with a vacuum of 10−11 mbar set by TMPs. The size corresponds to the goal of
KATRIN of improving the energy resolution by one order of magnitude in comparison
to similar experiments performed before.

Only the parallel component of the momentum of the β-electron, with respect to the
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(a) (b)

Figure 3.6 | Journey of the KATRIN’s main spectrometer. (a) Classical picture of the KATRIN
main spectrometer being transported between the houses of Leopoldshafen, already just a few
kilometers from its final destination. (b) Map showing the route taking by the spectrometer. Both
images from [KAT99].

magnetic lines, is filtered by the potential barrier. Since the β-electrons are produced
isotropically, the momentum of almost all of them will contain a perpendicular com-
ponent, which will not interact with the potential barrier. That is the reason why it is
necessary to adiabatically transform the perpendicular component of the momentum of
the electron to a parallel component. This is done by decreasing the magnetic field by
around four orders of magnitude from the beginning to the center of the vessel, where
the highest electrostatic potential is located. This potential is present along a plane
perpendicular to the magnetic lines, called the “analyzing plane”. If the electrons cross
this plane, they will reach the detector; if not, they will return to the source. To conserve
the magnetic flux4, the area of the flux tube of the analyzing plane should be four orders
of magnitude larger than the area of the flux tube at entrance of the vessel. The latest
input gives a magnetic field at the WGTS of Bs = 3.6 T, a magnetic field close to the
detector of Bmax = 6 T, and one more at the analyzing plane of Bana = 9× 10−4 T. The
magnetic field in the analyzing plane is fine tuned by an advanced system of air coils,
which also correct for the Earth’s magnetic field.

The electrostatic field in the main spectrometer is given by a set of two layers of
wire electrodes, placed in the inner wall of the vessel, along the beamline. The vessel
itself is also set to a high voltage, but the wires are slightly more negative to reject
electrons coming from the walls and reduce the background. This electrostatic potential
is changed by steps of 0.5 to 1 V at the analyzing plane.

Fun Fact: If you work in the KATRIN Collaboration you know for sure the story. In
summary, the vessel for the main spectrometer was produced in Deggendorf, some
400 km away from where the experiment takes place, in Karlsruhe. But transporting
the vessel through the streets of the highway was apparently too expensive, because

4B1 A1 = B2 A2, where B is magnetic field and A is area, so, B1
B2

= A2
A1
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Figure 3.7 | FPDViewer in SAMAK. The view of the Focal Plane Detector, given as an output
in SAMAK. One can distinguish the ring-wise configuration of the pixels. In this example a
simulation of the background is shown.

the highway was not prepared for a tank of such a big size, and (if I heard correctly)
some bridges where blocking the way. So instead the vessel was transported by the
Danube River, through the Mediterranean Sea, around the Iberian Peninsula and down
to Karlsruhe by the Rhine River; a journey of around 9000 km (fig. 3.6).

3.1.6 Monitor Spectrometer

The spectrometer from the former Mainz Experiment is used in KATRIN as a “monitor
spectrometer”. It measures about 4 m in length and 1 m in diameter. Its role is to
measure the high voltage used in the main spectrometer, and in particular its stability. It
does so by analyzing the narrow 17.8 keV peak of the 83mKr energy spectrum with its
own MAC-E Filter. Since both vessels are connected to exactly the same high voltage,
any perturbation of the high voltage would be equally transmitted and observed in the
two spectrometers. In this way, even changes in the ppm level of the high voltage can be
detected.

3.1.7 Focal Plane Detector

20



3.1 Measurement principle and set-up

Figure 3.8 | KATRIN Detector. The
detector for the KATRIN Experiment.

The detector used in KATRIN is a semi-conductor
based silicon PIN diode, called Focal Plane De-
tector (FPD). It has a circular shape, with 9 cm in
diameter, and is divided in 148 pixels, each detect-
ing the same fraction of the flux tube. Furthermore,
the pixels are arranged in 13 concentrical rings.
The ring in the center has 4 pixels, and the rest are
composed of 12 pixels each. The exact positioning
of the pixels can be seen in fig. 3.7, and a picture
of the detector in real life is in fig. 3.8. The pixel
configuration is used to distinguish between inho-
mogeneities in the magnetic and electric fields in the analyzing plane. Consequently,
148 independent spectra are measured, leading to different analysis types5, discussed
further in chapter 5.

The detector has a resolution of about 2 keV, relevant mainly for the Region of Interest
cuts of the data. The resolution of the experiment is actually provided by the main
spectrometer and the role of the detector is not to provide information of the energy of
each electron, but rather just to count them. The detection efficiency is about 95 %.

5. . . and demanding a lot of creativity from the analysis team in KATRIN!
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4 Tritium Beta Decay Spectrum Model in
SAMAK

In this chapter I explain the process taking place in SAMAK to obtain the integrated
β-decay spectrum of the tritium molecule, following the theory. The production of
tritium spectra in SAMAK is rather “object-oriented”. All the variables and most of the
functions to create the spectra are embedded inside classes1; the code used to fit the
model to the data along with the code to analyze the runs of the First Tritium Campaign
are also written as classes.

In SAMAK there are five main superclasses2. I list them here in a hierarchical way
from top to bottom, together with the main contents of each:

• KATRIN: KATRIN general settings including the measuring time distribution and
its related parameters are set.

• FPD: (Focal Plane Detector) the segmentation (see chapter 5) and its background
are chosen; other parameters regarding the detector are set too, like the efficiency
for example.

• WGTSMACE: this class relates to both the source (WGTS) and the main spec-
trometer (MACE). It includes the information about the main magnets in KATRIN,
density and composition of the gas in the source, and information to construct the
response function, among other things.

• TBD: (Tritium Beta Decay) this class (actually not a superclass) contains the
theoretical information to build the differential and integral spectra of tritium,
including all corrections to the Fermi Theory identified so far.

• Kr: (Krypton) the purpose of this class (also not a superclass) is similar to TBD,
but for krypton.

The first three classes correspond to KATRIN settings and the response function,
while the last two are related to the physics of the experiment.

1In MATLAB®, classes are templates to create objects that enclose data and the functions to operate on
that data. In other words, a class is a collection of variables and functions that ideally are related in
some way. Within classes, variables are called properties and functions are called methods.

2Classes can inherit all the properties and method from another class. When this happens, the class giving
the properties and methods is a superclass, and the class receiving them is a subclass. A class can be a
superclass and subclass at the same time, as is sometimes the case in SAMAK.
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4 Tritium Beta Decay Spectrum Model in SAMAK

4.1 Tritium beta-decay

In this section I will explain the theory behind the β-decay spectrum of tritium. This
section is influenced by the works of [Nav16a], [Dre+13], and [Roc18].

Enrico Fermi in 1934 proposed a relationship to include the neutrino in the explanation
of the distribution of energy of the electrons emitted in β-decay [Fer50]. This relationship
is now called “Fermi’s Golden Rule”.

Γ = (2π)∑
∫
|M|2d f (4.1)

where h̄, the reduced Planck’s constant is taken to be one for simplicity. Γ is the decay
rate, |M|2 is the transition matrix element, or the strength of the coupling between initial
and final states, and ∑

∫
d f is the sum and integration of all discrete and continuous

final states, otherwise known as density of final states. Let us have a look at that first.
The number of outgoing particles dn with momenta between p and dp, within a

normalization volume V and into a solid angle dΩ is

dn = Vp2dpdΩ/(2π)3 = VpEtotdEtotdΩ/(2π)3, (4.2)

where the 2π in the denominator is the Planck’s constant in natural units, and Etot

is the total energy of state n. Rearranging terms, one can obtain the state density per
energy interval and solid angle.

dn
dEtotdΩ

=
VpEtot

(2π)3 (4.3)

If one considers the mass of the nucleus much larger than the energies of the emitted
electron and neutrino, then it receives no energy and balances the momenta. The
correction due to the recoil of the nucleus will be discussed later (sec. 4.3). Then the
density of states include only those of the neutrino and electron. Using eq. 4.3 for the
energy of the electron Ee and the energy of the neutrino Eν

ρ(Ee, Eν, dΩe, dΩν) =
dne

dEedΩe

dnν

dEνdΩν
(4.4)

= V2 peEe pνEν/(2π)6 (4.5)

= V2
√

E2
e −m2

e Ee

√
E2

ν −m2
νEν (4.6)

That is all, for now, regarding the density of states. Let us turn our attention to
the matrix element. Normally it is divided into the leptonic and nuclear parts, and
normalized by Fermi’s coupling constant and the Cabibbo angle

M = GF cos(ΘC)MlepMnucl. (4.7)

The decay of tritium is superallowed, which means that the leptonic matrix element is
just the probability of finding the neutrino in the nucleus multiplied by the probability
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4.1 Tritium beta-decay

of finding the electron in the nucleus. The latter happens because none of the leptons
takes away angular momentum. The probability of finding the neutrino is 1/V and
the probability of finding the electron is (1/V)F(E, Z′), where F(E, Z′) is the Fermi
function [Wil91b]

F(Z, W) = 4(2pR)−2(1−γ)|Γ(γ + iy)|2(Γ(2γ + 1))−2eπy (4.8)

where p =
√

E2 − 1, α ≈ 1/137 is the fine-structure constant, R is the nuclear
radius, γ =

√
1− (αZ)2 and Z is the atomic number, y = αZW/p, and Γ is the Gamma

Function Γ(z) =
∫ ∞

0 tz−1e−tdt. The Fermi function takes into account the electromagnetic
interaction of the β-electron with the daughter nucleus. The leptonic matrix element is
then |M|2 = F(W,Z)

V2 .
The nuclear matrix element, when part of a superallowed transition, is independent of

the kinetic energy of the electron. It is normally divided into a vector current or Fermi
part ( where the change in angular momentum ∆Inucl = 0 and a coupling of the spins of
the electron and neutrino to S = 0) and a axial current or Gamow-Teller part (∆Inucl = 0
or ±1, excluding Inucl = 0→ Inucl = 0, with the electron and neutrino spin coupling to
S = 1). Then what is left is an angular correlation of the electron and neutrino. Charge
current weak interactions maximally violate parity, so the preferred helicity of particles
is positive and for antiparticles is negative (depending on the velocity). The angular
correlation factor is, considering the velocity as β = v/c, then 1+ a(~βe ~βν). In pure Fermi
transitions, the coefficient a is 1, and in Gamow-Teller transitions the coefficient is -1/3
[SBN06].

The density of states, now transformed into a density of phase space (eq. 4.6), is
distributed in the two-particle phase space, defined by a δ-function forcing energy
conservation. The decay rate Γ is actually a sum over each of the decay channels
weighted by its probability P

Γ = ∑
i

PiΓi (4.9)

Let us compute the decay rate for Γ0.

Γ0 = 2πP0

∫
Ee,Eν,Ωe,Ων

|GF cos ΘC MlepMnucl|2dnednν (4.10)

=
P0

(2π)5

∫
Ee,Eν,Ωe,Ων

G2
F cos2 ΘCF(E, Z′)|Mnucl|2· (4.11)√

E2
e −m2

e Ee

√
E2

ν −m2
νEν(1 + a(~βe ~βν))·

δ(Q− (Ee −me)− Eν − Erec)dEedΩedEνdΩν,

where Q (or rather Q-value) is the energy released in the decay, given as the differences
of the atomic masses and the binding energies Q = ∆M(T−He)− ∆Eb. This ∆Eb is the
difference of the electronic binding energy, and can be calculated by a combination of
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4 Tritium Beta Decay Spectrum Model in SAMAK

molecular dissociation and ionization energies [Las18]. The Q-value is distributed in
three elements, the kinetic energy of the electron, the total energy of the neutrino, and
the recoil energy. If molecular tritium is used, a fourth element is introduced: the Final
States. In the range of interest for neutrino mass search, the recoil energy is taken to be
constant at a value of Erec = 1.72 eV for TT, with a variation of 3.5 meV in the last 30 eV
below the endpoint [Mas+07].

The endpoint energy of the β-decay spectrum is defined as the maximal energy the
electron takes with a vanishing neutrino mass3.

E0 = Q− Erec (4.13)

If one performs an integration over the angles, what comes out is an average nuclear
matrix element. The next step would be to sum over all final states. This is done
two-fold, first over the neutrino mass eigenstates mi, each with probability |Uei|2; and
then over the electronic final states of the daughter system. I discuss the latter in the
next section.

4.2 Ground and Excited Molecular Final States
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TT Ground and Excited States - SAENZ
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Excited States: (P=42.5%)

Figure 4.1 | FSD TT. Ground and Excited Molecular Final States for the TT molecule used in
SAMAK, data from A. Saenz [SJF00].

3In the KATRIN Experiment, additionally, there is a work function in the rear wall of the apparatus, which
is not yet defined. So the endpoint is like

E0(DT, W) = E0(DT) + W (4.12)

At the time of the First Tritium Campaign, this work function was unknown, but believed to be in the
few hundreds of millivolts range [Las18].
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4.2 Ground and Excited Molecular Final States
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Figure 4.2 | FSD DT. Ground and Excited Molecular Final States for the DT molecule used in
SAMAK, data from N. Doss [DT08].

These states include both excitations in the electron shells, as well as molecular
rotational and vibrational excitations, as the tritium in KATRIN is in molecular form.
This motions occur because of the rearrangement of the electronic orbitals in the daughter
molecule, consequence of the sudden change of nuclear charge during the decay. The
final states shift the endpoint energies.

The Final States Energies and Probabilities for the KATRIN collaboration are provided
by A. Saenz for TT and HT [SJF00], fig. 4.1; and N. Doss for DT [DT08], fig. 4.2.

In SAMAK they are included in a matrix, to benefit from MATLAB® vectorization
capabilities, making the process faster as there are no loops involved.

Ground/Excited State

TexP_M = repmat(TexP,obj.nTe,1);

TexE_M = repmat(TexE,obj.nTe,1);

Q_M = obj.Q*ones(obj.nTe,numel(TexP));

Te_M = repmat(obj.Te,1,numel(TexP));

pe_M = repmat(obj.pe,1,numel(TexP));

me_M = obj.me*ones(obj.nTe,numel(TexP));

mnuSq_M = obj.mnuSq*ones(obj.nTe,numel(TexP));

GES = 0 + sum(...

((Q_M-Te_M-TexE_M)>=0)...

.*pe_M.*(Te_M+me_M).*(Q_M-TexE_M-Te_M)

.*(((ones(obj.nTe,numel(TexP))-sin2T4_M)....

.*(((Q_M-Te_M-TexE_M).^2-mnuSq_M)>=0)...

.*((Q_M-TexE_M-Te_M).^2-mnuSq_M).^.5),2);
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4 Tritium Beta Decay Spectrum Model in SAMAK

4.2.1 Differential Spectrum

The differential energy spectrum

dN
dtdE

=
dΓ
dE

(4.14)

gives the decay rate per energy, and is the seed to compute the integral spectrum,
which is what is actually measured in KATRIN. More about the integral spectrum comes
later in sec. 4.4.5.

The differential spectrum can be obtained from eq. 4.11 when the second integration
over E is not executed. Already summing over the final states, the differential spectrum
is

dΓ
dE

= CF(E, Z′)pe(E + me)
√
(E + me)2 −m2

e (4.15)

∑
i,j
|Uei|2Pj(E− E0 − Xj)

√
(E− E0 − Xj)2 −m2

i

Where E is the energy of the electron, and Xj are the final state excitation energies,
together with their probability Pj. The factor C should be C = G3

F cos2 ΘC|Mnucl|2/(2π)3,
but in SAMAK it is treated as a normalization factor and is obtained through the
experimental half-life of tritium (sec. 4.2.3).

4.2.2 Effective electron anti-neutrino mass

The differences of the squared neutrino masses are in the order of 10−3 eV2 [Ada+11]
and 10−4 eV2 [Ara+05], whereas the sensitivity of KATRIN is about (0.2)2 eV2, so it
cannot resolve between the different mass values, as the energy resolution of the MAC-E
Filter (∼ 1 eV) is much greater than the mas difference. The differential spectrum can be
parametrized as

dΓ
dE

= CF(E, Z′)pe(E + me)
√
(E + me)2 −m2

e (4.16)

·∑
j

Pj(E− E0 − Xj)
√
(E− E0 − Xj)2 −m2

β

where the neutrino mass term is represented as m2
β = ∑i |Uei|2m2

i , an incoherent sum
of neutrino masses, and is called the effective electron anti-neutrino mass.

4.2.3 Normalization

The normalization in SAMAK is done based on the decay constant of tritium, taken as
λ = 1.78283× 10−9s−1 (from the half life of 4500 ± 8) days [LU00]. This decay constant
is the total number of decays per second, meaning it is an integral over all energies of
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4.3 Theoretical Corrections

the differential spectrum. For the normalization, one has to find the fraction of decays
occurring in the last eVs close to the endpoint (depending on the energy range analyzed,
for example -30 eV from the endpoint). This is called the Cumulative Fraction, Cfrac
(dimensionless). The product λCfrac is the decays per second per tritium atom above
a given threshold. That number is then multiplied by two times the total number of
tritium molecules, because there are two tritium atoms per tritium molecule. That
number can be obtained from the column density which has units molecules

cm2 (see sec.
3.1.2) times the area (cm2) of the flux tube in the WGTS. This assumes that all molecules
are TT. To account for DT and HT, the tritium purity factor is also included, which is the
atomic fraction of tritium in the gas (dimensionless) as Tpur = ATT + 0.5ADT + 0.5AHT

where Tpur is the tritium purity and AiT is the molecular fraction of each isotopologue
(the amount of isotopologue relative to the total amount of gas) with i = T, D, H. Only
half of those β-electrons can reach the detector, since the other half go to the rear wall.
From that half, only those within the acceptance angle of KATRIN will go through the
filter, the rest will be reflected. The last piece is the ability of the detector to detect
(forgive the redundancy) the incoming β-electrons, known as detector efficiency.

The equation for the normalization factor N takes then the form

N = λ · 2πrfluxρd · 0.5
(

1− cos
(

sin−1(
√

Bs/Bmax)
))
· εCfracTpur (4.17)

Where rflux is the radius of the flux tube, ρd is the column density, Bs and Bmax are
the source and pinch magnet respectively, and ε is the detector efficiency.

This normalization parameter is almost always fitted anyways, so it is important that
it lies relatively close to the real value, but a high precision is not necessary, and actually
not possible since the tritium activity is not known precisely.

4.3 Theoretical Corrections

I present in this section the theoretical description of the corrections applied to the
differential tritium β-decay spectrum in SAMAK. After these corrections, the Doppler
effect is applied as a convolution to the spectrum, while the rest are called “multiplicative
corrections”, as the correction consists in multiplying the differential spectrum by a
corrective function, which depend on the β-electron energy. Depending on the precision
wished for the simulated spectrum in SAMAK, one could opt to turn on or off any of
these corrections.

4.3.1 Doppler Effect

In the WGTS, there is a Doppler broadening of the differential energy spectrum due
to the random thermal motion of the tritium molecules and the bulk gas flow. It is
expressed as a convolution of the differential spectrum with a broadening kernel g, as
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4 Tritium Beta Decay Spectrum Model in SAMAK

shown in [Kle+18a],

(g ~
dN
dE

)(E) =
∫ ∞

−∞
g(E− ε)

dN
dE

(ε)dε, (4.18)

with ε being the kinetic energy from the β-electron measured in the rest frame of the
emitter4, and E is that energy but in the laboratory frame.

Kernel

The first step to include the Doppler effect is to calculate the kernel, which is given by
the Maxwell-Boltzmann distribution. If one considers only the component of the thermal
velocity of the tritium molecule v|| which is parallel to the electron emission direction,
the broadening kernel thereof is a Gaussian centered at v|| = 0 and with a standard
deviation of σv =

√
KBT/M, where kB is the Boltzmann constant, T the temperature of

the gas, and M the mass of the emitting tritium molecule,

g(v||) =
1

σv
√

2π
e−

1
2 (

v||
σv )

2
. (4.19)

Now one has to consider the bulk velocity u, which in average is 13 m/s. Dealing
only with the component parallel to the electron emission direction with polar angle
θ, the Gaussian would be now centered at u cos θ. We integrate then over all emission
angles until the maximal acceptance angle θmax

g(v||) =
1

1− cos θmax

∫ cos θmax

i

1
σv
√

2π
e−

1
2 (

v||−u cos θ

σv )2
d cos θ. (4.20)

It is necessary to write the v|| in terms of E and ε, to incorporate it into the convolution
in eq. 4.18. In the non-relativistic approximation

E =
1
2

me(ve + v||)
2 =

1
2

me(v2
e + 2v||ve + v2

||), (4.21)

where ve and me are the electron velocity and mass, respectively. Considering that
ve ≈ 107 m/s and v|| is in the order of 102 to 103 m/s, the last term in the quadratic
expansion is negligible. The approximated difference is then

∆E = Elab − E =
1
2

me(v2
e )−

1
2

me(v2
e + 2v||ve) = mevev|| (4.22)

in which v|| can be rewritten as
√

2ε/me. Finally the kernel has the form

g(E, ε) =
1

meve

1
1− cos θmax

∫ cos θmax

i

1
σv
√

2π
e−

1
2 (

E−ε
meve −u cos θ

σv )2
d cos θ. (4.23)

4Which is almost the same as the center of mass energy, owing to the huge difference in the mass of the
electron and the mass of the nucleus.
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The new standard deviation of eq. 4.23 is σE =
√

2εmeσv. In SAMAK, it has a standard
value of σE ≈ 95meV, with standard parameters of bulk velocity u = 0 and tritium
temperature T = 30 K, fig. 4.3. The convolution with the Doppler effect kernel can
be seen as a smearing of the energy scale. It can be recalculated with the function
computeKernel().

Convolution edge artifacts

Figure 4.3 | Doppler effect gaussian kernel. Kernels for
different bulk velocities, but the same temperature T = 30 K.

Doing a convolution com-
putationally in SAMAK can
lead to some complications.
The convolution is done on
a finite part of the spec-
trum, causing an undesir-
able edge effect. This can be
avoided by enlarging the en-
ergy range of the spectrum,
doing the convolution, and
then returning the range to
its original size.

The convolution is not
done explicitly, but rather by
doing a matrix multiplica-
tion, or using the numerical
convolution function from
MATLAB® conv [MAT18].

Visualizing the effect

The difference in the differential spectra is minimal for the naked eye, fig. 4.4. A relative
difference involving the integral spectra shows more clearly the Doppler effect, fig. 4.5.
It shows how the Doppler effect (at different standard deviations) for three years of
measurements can have the same magnitude as the effect of the neutrino mass in the
spectrum.

4.3.2 Multiplicative Corrections to the Fermi function

In this section I give an overview of the energy-dependent multiplicative corrections
applied in SAMAK, summarized in [Mer+15]. The radiative correction has the greatest
impact in the spectrum. The relative change in the spectrum caused by the rest is only
0.4 permille in the long First Tritium range (-1600 eV from E0), and 0.02 permille in the
extended neutrino search range (-60 eV from E0), fig. 4.7.
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4 Tritium Beta Decay Spectrum Model in SAMAK

Figure 4.4 | Doppler effect (relative difference diff. spectrum). Difference in the differential
spectra with and without Doppler effect. The inset shows a zoomed in version, so that the
difference is more appreciable.

Figure 4.5 | Doppler effect (relative difference int. spectrum). Relative difference in the
integral spectra showing three cases: Doppler effect with an standard deviation in the kernel of
93 meV and 134 meV, and a neutrino mass of 0; and a spectrum with a neutrino mass of 200
meV and no Doppler effect. The Doppler effect could cancel the neutrino mass effect.
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Radiative Correction
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Figure 4.6 | Impact of radiative correction. Impact
of the radiative correction in the β-decay spectrum,
shown as the ratio of the spectra with and without
the correction.

Both virtual and real photons interact
with the emitted β-electron, prompt-
ing corrections to the shape of the
β-decay spectrum, the so-called radia-
tive corrections. In SAMAK there are
three formulas available to compute
them. The first and second ones, are
the approximated and general formu-
las from [RW83], respectively. For the
approximation it is taken into account
that for tritium ve � c where ve is the
velocity of the emitted β-electron and
c the speed of light.

The third option is obtained from
[Sir67], but has the issue that the cor-
rection has complex values at the end-
point of the spectrum.

Using the the general formula from
[RW83], the impact of the radiative
correction can be seen in fig. 4.6. In
the energy range of interest for the First Tritium campaign, the maximal relative change
in the differential spectrum is 0.09 %, meanwhile in the extended region of interest for
neutrino mass search (i.e. -60 eV below the endpoint) the same concept has a value of
0.05 %.

Recoil corrections

For the computation of the differential spectrum, it was originally assumed that the
momentum taken by the nucleus was negligible. Taking it into account leads to four
additional corrections [Wil91a], three of which are handled together: the transformation
of the system from a two-body phase space to a three-body phase space, the weak
magnetism, and the V-A interface. The correction left is due to the electron interacting
with the moving E-field of the daughter nucleus.

Electron-electron exchange correction

Since both the outgoing β-electron and the electron in the orbital of the nucleus are the
same, there is the possibility that a quantum mechanical exchange takes place during
the emission.
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Finite Extension of the Nucleus
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Figure 4.7 | Impact of theoretical corrections except
radiative. Impact of the all theoretical correction
except for the radiative one in the β-decay spectrum,
shown as the ratio of the spectra with and without
the corrections.

So far for the analysis the nucleus of
the daughter molecule 3He has been
assumed to be point-like, but in re-
ality it has a finite size. Assuming
the nucleus has some finite size, the
electric field is no longer decreasing
quadratically with distance inside the
nucleus, leading to a multiplicative
factor. Furthermore, the evaluation
of the electron and neutrino wave-
functions inside the volume of the
nucleus also gives a correction factor.

4.4 Response Function

The integral β-decay spectrum mea-
sured at the detector is affected by the
experimental setup in KATRIN. This
is encoded in the response function.
It includes the transmission function
from the main spectrometer as well as
scatterings of β-electrons off tritium
molecules, that induce energy losses.

All in all, the response function gives the probability of an electron with certain
starting energy to go through the whole apparatus, while the MAC-E Filter is at a certain
retarding potential. A detailed derivation of the response function is given in [Kle+18b],
to which I will adhere.

4.4.1 MAC-E Transmission Function

The transmission function includes only the probability of crossing the MAC-E Filter. In
general, the β-electrons will reach the detector only if the momentum portion perpendic-
ular to the magnetic field lines is positive during the complete journey, or equivalently,
the kinetic energy corresponding to that perpendicular momentum E|| ≥ 0, when the
electron arrives at the analyzing plane. It means that not all of the longitudinal kinetic
energy was transformed into potential energy by the retarding potential.

In this section I make the assumption that the electrons that enter the MAC-E Filter
have an isotropic angular distribution and are transported adiabatically (i.e. the electron
orbital magnetic moment stays constant) to the detector. In that case, the transfer of
perpendicular momentum p⊥ to parallel momentum p|| and vice-versa (all with respect
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to the magnetic field lines) conserves the adiabatic invariant

p2
⊥

B
= const., (4.24)

in which B is the slowly varying magnetic field in which the electron moves. The trans-
verse momentum of the electron has the relativistic relationship with the perpendicular
energy E⊥

p2
⊥ = E⊥(γ + 1)me, (4.25)

where E⊥ = E sin2 θ, θ is the angle between the momentum of the β-electron and

the magnetic field θ = cos−1( ~p·~B
|~p·~B| ), and γ is the relativistic gamma factor γ = E

me
+ 1.

Similarly, the energy corresponding to p|| is E|| = E cos2 θ.
Starting at the source with a position zS, with a magnetic field BS = B(zS) and

an electrostatic potential US = U(zS), a kinetic energy E = E(zS), and a polar angle
θ = θ(zS), the transmission condition for an electron is

0 ≤ E||(z) = E + qUS − E⊥(z)− qU(z) (4.26)

= E + qUS − E sin2 θ
B(z)
BS

γ(zS) + 1
γ(z) + 1

− qU(z),

where q is the electric charge of the β-electron. I also assume that at the analyzing
plane of the MAC-E Filter (position z = zA), the retarding potential is maximal, therefore
the kinetic energy is minimal and γ(zA) = 1. The magnetic field BA is also minimal. I
further assume that the electric potential is zero at the source, so that the transmission
condition is now

0 ≥ E− E sin θ
BA

BS

γ + 1
2
− qU. (4.27)

The transmission function T is then given as function of the starting β-electron energy
E, angle θ and potential U for a certain magnetic configuration of KATRIN

T (E, θ, U) =

1, if E(1− sin2 θ BA
BS

γ+1
2 )− qU > 0

0, otherwise
(4.28)

To get rid of the angular dependence, one can integrate over the isotropic angular
distribution ω(θ) = sin θdθ. In KATRIN the magnetic field at the detector Bmax is
larger than that of the source so electrons emitted at an angle larger than the maximal
acceptance angle are reflected magnetically before reaching the detector. This angle is
given by

θmax = arcsin

√ BS

Bmax

 . (4.29)
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One benefit if this, is that the β-electrons emitted at a large angle, therefore traveling
through a longer path in the source, scattering more times, and losing more energy, are
discarded.

So, after integrating

T (E, θ, U) =
∫ θmax

θ=0
T (E, θ, U) sin θdθ, (4.30)

finally the transmission function acquires the relativistic form

T (E, U)p =


0, if E− qUp < 0

1−
√

1− E−qUp
E

BS
BA,p

2
γ+1 if 0 ≤ E− qUp ≤

BA,p
Bmax

E γ+1
2

1−
√

1− BS
Bmax

if E− qUp >
BA,p
Bmax

E γ+1
2

(4.31)

Where a subscript p was added to take into account the pixel-dependence on E and B,
because they are not homogeneous along the analyzing plane. Therefore, in SAMAK
there is a slightly different transmission function for each one of the pixels. Also the
approximation of γ+1

2 = 1.018 is used, result from evaluating the gamma factor at the
endpoint of the spectrum.

For the ring or stacked pixel analyses (see chapter 5), the magnetic and electrostatic
fields are averaged for the corresponding pixels (all for stacked pixel, the pixels in the
ring for ring analysis) prior to calculating the transmission function.

4.4.2 Energy Loss Function

Figure 4.8 | Energy Loss Function.
Empirical energy loss function calcu-
lated by [Ase+00]. Figure from [Kle14].

During the journey of the electrons through the
source and until the detector, the most relevant
energy loss process is the inelastic scattering of the
electrons off molecules in the WGTS. The elastic
scattering is not included in neutrino mass search
for several reasons:

• the elastic cross section is one order of mag-
nitude smaller than the inelastic one,

• it requires a fine binning in the meV magni-
tude to include it in the response function,

• and lastly and most important, the systematic
shift for ignoring this process is very small
and can be absorbed by the systematic budget
( 5× 10−5meV2) [Kle+18b].

It was shown in [Gro15] that the scattering angle
is minimal and can be neglected. Additionally, the
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4.4 Response Function

β-electron kinetic energy dependence of the cross-
section is neglected because the energy range of interest, tens of eVs below the endpoint,
is narrow enough [Kle+18b].

The energy loss function was empirically obtained in [Ase+00] and is composed of
two parts, a Gaussian for the low energies and a Lorentzian for higher energies.

f (ε) =


A1 exp

(
−2( ε−ε1

ω1
)2
)

if ε < εc

A2
ω2

2
ω2

2+4(ε−ε2)2 if ε ≥ εc,
(4.32)

being A1 = 0.204 eV−1, A2 = 0.0556 eV−1, ω1 = 1.85, ω2 = 12.5 eV, ε2 = 14.30 eV,
ε1 = 12.6 eV, and εc = 14.09 eV to maintain continuity between the Gaussian and the
Lorentzian (fig. 4.8). All of the values just written except ε1 were obtained from a fit
using MINUIT and have their respective uncertainties. This is not precise enough for
KATRIN, and the function would be remeasured and re-evaluated with high precision
e-gun measurements and an elaborate deconvolution technique [Han+17].

If the electrons do not scatter, they do not lose energy and therefore the energy loss
function is f0(ε) = δ(ε), where the subscript indicates the number of scatterings. For
one scattering, f1(ε) = f (ε) and for subsequent scatterings s, the energy loss function is
convoluted s times with itself fs(ε) = ( f ~ f )(ε).

4.4.3 Scattering Probabilities

To be able to calculate the inelastic scattering probabilities Pi for a certain number of
scatterings i, one needs

• the inelastic scattering cross section,

• the starting polar angle,

• and the density distribution of gas inside the WGTS (sec. 3.1.2)

In SAMAK an energy dependent inelastic scattering cross-section σinel(E) is imple-
mented, whose formula is

σinel(E) = 4πr2
BZ2 ERyd

E
· (1.5487 ln

(
E/ERyd

)
+ 2.2212), (4.33)

where rB is the Bohr radius in m, Z is the elementary charge of the incident particle
(Z = 1), ERyd is the Rydberg energy in keV. Using E = 18.6 keV as input, σinel(E =

18.6 keV) = 3.4501× 10−22 1/m2.
Being consistent with [Gro15], the number of scatterings can be calculated by a Poisson

distribution

Pi(z, θ) =
(λ(z, θ)σinel)

i

i!
exp

(
−λ(z, θ)σinel

)
, (4.34)
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4 Tritium Beta Decay Spectrum Model in SAMAK

where λ indicates the effective column density, that is to say, the column density seen
by an electron depending on the starting angle. It can be obtained by

λ(z, θ) =
1

cos θ

∫ L

z′=z
ρ(z′)dz′, (4.35)

the total length of the WGTS being L and having a density distribution along the
z-axis, ρ(z). The mean scattering probabilities for an isotropic angular distribution sin θ

and maximal polar angle θmax

P̄i(z) =
1

1− cos θmax

∫ 2π

θ=0
Pi(z, θ) sin θdθ. (4.36)

Finally to get the probabilities averaged over the complete WGTS tube, an integral
over the length is performed5.

P̄i =
∫ L

0

1
ρd

ρ(z)P̄i(z)dz (4.37)

where ρd is the total column density. The default design in SAMAK is to calculate the
scattering probabilities up to ten scatterings. The scattering probabilities for nominal
settings of KATRIN and for the settings in the First Tritium Campaign are in table 4.1.

Table 4.1 | Scattering probabilities. Scattering probabilities for the KATRIN with nominal
settings [Col05] and for the First Tritium Campaign.

No. scatterings Probability Nominal Probability First Tritium

0 0.4133 0.4474
1 0.2927 0.2957
2 0.1673 0.1550
3 0.0791 0.0665
4 0.0318 0.0241
5 0.0111 0.0076
6 0.0034 0.0021
7 0.0009 0.0005
8 0.0002 0.0001
9 5.5×10−05 2.4×10−05

10 1.2×10−05 4.7×10−06

5In SAMAK this is performed in two steps. First, the integrand f (z) is built in a matrix form depending
on the binning chosen (in the variable WGTS_ZCells)

1
ρd

ρ(z)P̄i(z).

In a later step the matrix is numerically integrated with the Simpsons formula to get the probabilities
shown in eq. 4.37.
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4.4.4 Response function
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Figure 4.9 | KATRIN Response Function. Response Function calculated in SAMAK with
Nominal Settings [Col05].

The response function per pixel Rp in KATRIN is built from the elements exposed in
the past sections, and has the form

Rp(E, U) = Tp(E, U) · P1 +
∫ ε=E−qU

ε=0
Tp(E− ε, U)F(ε)dε, (4.38)

where already the angular dependence has been taken care of, and F(ε) is the
sum of the convoluted energy loss functions, weighted by the scattering probabilities
F(ε) = ∑N

s=1 Ps fs(ε), where N is the total number of scatterings considered. The response
function for one pixel, calculated with Nominal KATRIN settings [Col05], is in fig. 4.9.

4.4.5 Integral Spectrum

The integral spectrum IS , which is the actual count number measured in the KATRIN
Experiment, is constructed by the integration of the combined response function and
differential spectrum

IS(U)p = TU

∫ ∞

0
(

dN
dtdE

)(E, U)p · Rp(E, U)dE. (4.39)

where TU is the measuring time at each retarding potential.
In SAMAK, the integral spectrum is calculated numerically by the use of three-

dimensional arrays.
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5 Analysis Types

The segmentation of the detector in KATRIN, together with the fact that the measure-
ments are divided in runs, which may use a different measuring time distribution (or
MTD1), give rise to different ways of analyzing the data presented by KATRIN.

In SAMAK, one of the most commonplace analysis is to fit the tritium model (chapter
4) to the data. This is explained in more detail in chapter 6, but what the reader should
have in mind is that normally, there are at least four fitted parameters. Two of them
contain some novel information in physics: the neutrino mass and the endpoint; and the
other two are nuisance parameters: the background and the overall normalization of the
spectrum. The ground and excited final states probabilities can also be fitted.

5.1 Focal Plane Detector Segmentation

The detector has a disc shape and is divided into 148 pixels that see the same tube flux
volume. They pixels are arranged in a concentric manner, leaving 4 pixels in the center
(bullseye), and then 12 pixels on each of the consecutive rings.

In principle, each pixel acts as an independent detector, and records an independent
spectrum. Due to inhomogeneities in the electrostatic and magnetic fields along the
analyzing plane, each pixel has a slightly different response function and energy scale,
see fig. 5.1. Unfortunately, both fields change both radially and azimuthally, therefore
not analyzing the data in a pixel-wise fashion will incur at some point in increasing
systematic uncertainties.

5.1.1 No segmentation

In this mode, the assumption that we make is that the detector is made up of only
one pixel. Within KATRIN literature, this mode is also called “Uniform Mode” or
“Stacked-Pixel Mode”. In SAMAK, the approximations done are averaging the retarding
potentials and the magnetic fields. The former falls into an average of the energy scale
and the latter results in an averaged response function. The uncertainties induced by
this averaging can be taken into account by the use of a covariance matrix.

5.1.2 Single-pixel

In the single-pixel analysis mode the four parameters are fitted independently in each
of the pixels. It is quite similar to doing the “No segmentation” analysis, but with

1A MTD is the way time is distributed among the different qU bins.
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(a) (b)

Figure 5.1 | Inhomogeneities in the detector. (a) Magnetic field varying in the analyzing plane
at 6 G. (b) Electrostatic field varying in the analyzing plane at -18573 V.

a background and normalization reduced by a factor of 1/148, and using a slightly
different energy scale and response function for each pixel. At the end one obtains 148
neutrino masses and 148 endpoints, which will necessitate further statistical treatment as
there is only one neutrino mass and one endpoint in nature. Nevertheless, this analysis
is useful to identify unforeseen systematic effects or misalignment of the apparatus, and
to check the pixel-wise performance of the setup.

5.1.3 Multipixel

This is the analysis mode that makes the best use of all the information available; but, as
is often the case in life, the best is also the most expensive.

Here we fit all of the pixels at the same time, having a common neutrino mass squared
and endpoint value, but leaving the background and normalization independent pixel-
wise. This is done because, in principle, all pixels should see the same endpoint and
neutrino mass, but the background and the normalization (see sec. 4.2.3) may be different
from one pixel to another. This amounts to 298 parameters being fitted simultaneously.
Of course this comes at a computational cost. I will not get into details, but to give
a rough idea, the fit of 4 parameters in an ultrabook takes around 1 second, then the
single-pixel fit of all pixels takes a few minutes. On the other hand, a multipixel fit with
all pixels takes around 30 minutes to complete in the same computer.

The disadvantage of using this method, is that if there are systematic uncertainties,
like a shift of the energy scale, affecting differently each of the pixels, it is possible that
the fit does not converge, or the results given in a common endpoint are not reliable.
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5.2 Multi-run

5.1.4 Hybrid Fit

This method arose because the Minuit [Jam94] version for MATLAB® can handle only
a maximum of 150 parameters, less than what was needed for the multipixel fit. To
overcome this obstacle, a background-only fit was done first, to all of the pixels; these
background values were then given as an input, and a multipixel fit was performed using
148 free normalizations, one endpoint and one neutrino mass squared, giving a total of
150 parameters (exactly the maximum allowed!). Since one of the native minimizers in
MATLAB®, fminunc [MAT18] is capable of handling all of the 298 parameters needed
for the normal multipixel fit, this method has not been revisited as fminunc was
implemented.

5.1.5 Ring

Due to the relatively long computation time for the multipixel fit, an interesting com-
promise was reached. Instead of segmenting the detector in each one of its pixels, we
reunite them in rings. Radially dependent effects can still be seen, but the information
on azimuthal asymmetries is lost. Although the azimuthal asymmetries are expected
to be smaller than the radial asymmetries. As for the approximations, the response
function and energy scale are averaged per ring, but there is less loss of information
here compared to the “no segmentation” case.

5.2 Multi-run

A run in KATRIN is a complete scan through all retarding potential values stated in the
MTD. It is further divided into subruns, which is the time spent at only one retarding
potential value. The length of a run is in the range of hours for First Tritium.

There are some parameters that should be kept stable within some tolerance through-
out a run to obtain reliable data, examples thereof are the temperature in the source, the
magnetic and high voltage values, the tritium concentration in the gas, etc. These are
called “slow-control parameters”. During the First Tritium Campaign (chapter 9) it was
shown that the stability of those parameters comply with the specified requirements
during a run [Par18]. Nevertheless, when starting a new run, it is possible that some
slow-control parameters vary significantly with respect to values from previous runs, so
the best approach is to treat the runs separately.

Fun Fact: A typical length of a run is 3 hours, and KATRIN will take data for three
years. That is 3× 365.25× 24 = 26298 hours, or around 9000 runs. If we treat each run
independently and do a simultaneous multirun-multipixel fit, that would give a total
of around 2.5 million parameters to fit simultaneously. Some would say that is quite a
challenge.

In the next paragraphs I will first mention the formats for the KATRIN data used in
SAMAK, and then what is done with the multiple runs that KATRIN produces.
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5.2.1 Run Summary

KATRIN raw data is first processed to build the integral spectrum, then it is available
for each collaborator in the Intermediate Data Layer for Everyone (IDLE) in the form
of Run Summaries. As indicated in the IDLE Manual [Eno17], Run Summaries are
“tree-structured document[s] to store parameters of each run”. Run Summaries are a
great tool to visualize KATRIN data, owing to the fact that they can be read by humans
and condense all relevant information to analyze the data with the analysis tools, see fig.
5.2.

Nonetheless, Run Summaries are not easily read into SAMAK, because they are
text-based and a lot of parsing would be needed. Furthermore, the Run Summaries
are constantly being updated, so with each new update, the reading mechanism in
SAMAK would have to be updated too. At first, the Run Summaries were converted
into numerical matrices externally, but currently the solution found was to convert them
to HDF5 files.

Figure 5.2 | Run Summary. Extract from a random Run Summary File of a First Tritium run.

HDF5 Files

Let’s take a break here to briefly introduce HDF5 Files. HDF5 stands for Hierarchical
Data Format, version 5. According to the HDF Group “HDF5 is a data model, library,
and file format for storing and managing data. It supports an unlimited variety of
datatypes, and is designed for flexible and efficient I/O and for high volume and
complex data.” [Gro18]. MATLAB® already includes functions for both high level and
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low level reading and writing of HDF5 files. The management is much easier than text
files, so updates in the structure of the HDF5 Files with KATRIN information can be
adopted effortlessly.

The idea and deployment of the conversion of KTree objects, which are an intermediate
step between raw data and Run Summaries, into HDF5 Files was conceived by Christian
Karl, a member of the Analysis Team of KATRIN. The reading in SAMAK of the HDF5
Files and further conversion to .mat files (MATLAB Formatted Data), was carried out by
me.

5.2.2 Stacking runs

In order perform the analysis and significantly increase the statistics, one must combine
the data produced in different runs. There are several idea on how to do this. One of
them is to simply append the data in the different runs, and therefore increase the data
points. This pursuit, which provokes no added systematic uncertainties, is possible in
SAMAK, but has not yet been practiced, as we decided to stack the runs to ease the final
fit and treatment of uncertainties.

Simple stacking

Simple stacking means adding the data from different runs which are at the “same”
retarding potential, even though from run to run the HV system does not return to
exactly the same retarding potential. Some conditions should be met though: the
retarding potential difference between runs should not be larger than some set tolerance.
At the time of writing the tolerance is 1 V, but that proved to be too large. In fig. 5.4 it
can be seen that the retarding potentials are kept within a range of 300 mV for almost
all cases. A weighted average based on the measuring time per run is executed on the
rest of the slow-control parameters. The systematic uncertainty obtained by stacking is
seen on fig. 5.3, calculated using the covariance matrix approach.

Figure 5.3 | FT Stack Fractional Covariance Matrix. Right: Stack fractional Covariance Matrix
for First Tritium. Left: Fractional Covariance Matrix including all systematic effects for First
Tritium. It can be seen that the effect of stacking the runs is much smaller than the rest of the
systematic uncertainties. Figure from [Sch18].
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Variation from the mean retarding potential per run

Figure 5.4 | HV Variation. Variation of the retarding potential per run with respect to the mean
retarding potentials from all runs, for pixel 1 of the detector. Data taken from 85 runs from the
First Tritium Campaign.

Advanced stacking proposals

Some stacking proposals that draw less systematic uncertainties have been brought
into public knowledge (within the Collaboration). One first proposal was made by Dr.
Christian Weinheimer during the Analysis Workshop on July 2018 in Munich. The main
idea is to use a polynomial fit on the data to know the number of counts there should
be at the retarding potential of interest [Wei18].

One more proposal was done earlier by Dr. Thierry Lasserre, and is similar to the
one by Dr. Christian Weinheimer, but instead of using a polynomial fit on the data, the
number of counts at the retarding potential of interest is estimated by using the model.

Neither of these proposals have been performed for the studies presented in this work,
as they are expected to be relevant with more statistics.
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6 Statistical methods implemented in
SAMAK

The main goal of KATRIN is to measure the electron antineutrino mass with a sensitivity
of 200 meV at 90 % confidence level [Col05]. This means that KATRIN could exclude
the null hypothesis of a vanishing neutrino mass if the neutrino mass value is larger
than 200 meV.

In this chapter I give a succinct overview of the statistical methods that SAMAK uses
to provide best estimators to the physical parameters of interest extracted from the
KATRIN data. I focus on the fitting mechanism for the tritium β-decay spectrum and
the resulting best fit parameters.

The KATRIN Experiment is limited for providing the true value of the neutrino mass
with infinite precision, because of statistical and systematic uncertainties. What KATRIN
can do is find a best fit estimator, and establish a confidence interval around it. This
would be the so-called frequentist approach, which is one of the main schools in statistics.
The Bayesian approach, another school, would give a posterior probability distribution
for the neutrino mass, for instance. This process is called parameter inference. Since
SAMAK only uses (currently) the frequentist approach, the Bayesian school is not
discussed in this work.

6.1 Likelihood and χ2 statistic

The likelihood function L is how likely a set of parameters Θtheo is, given a set of
observations Xobs

L(Θtheo|Xobs), (6.1)

and is taken as equivalent to the probability P of making that observation given the
set of those parameters

L(Θtheo|Xobs) = P(Xobs|Θtheo) (6.2)

In SAMAK, the KATRIN likelihood function consists of the integral tritium β-decay
spectrum (chapter 4). In the simplest case, this function depends on four parameters:
electron antineutrino mass squared m2

ν, tritium endpoint energy E0, the mean back-
ground rate B, and the overall normalization C of the signal (tritium activity). In the
KATRIN 3-year measurement, the physical parameter of interest is the m2

ν and the
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other are nuisance parameters1. In the First Tritium Campaign, m2
ν was fixed, and the

parameter of interest was taken to be E0, the rest stayed as nuisance parameters.
For individual measurements (counts in each bin in the KATRIN case) the likelihood

function is the product of the likelihoods of each one of the measurements

L(m2
ν, E0, B, C|Xobs) = ∏

i
pi(Xobs,i|m2

ν, E0, B, C), (6.3)

where pi is the probability of each individual measurement.
The values of Θ that maximize the likelihood function are deemed to be the best

estimator values. In practice, both nuisance and main parameters are fitted freely to find
the best fit values.

For convenience and computational cost reasons, it is commonplace to minimize the
negative log likelihhod instead of maximizing the likelihood

− ln L = − ln

(
∏

i
pi(Xobs,i|m2

ν, E0, B, C)

)
= −∑

i
ln
(

pi(Xobs,i|m2
ν, E0, B, C)

)
. (6.4)

Fitting more parameters

The model and/or the data could depend on other parameters that could also be
included as additional fit parameter, i.e. the column density in the First Tritium
Campaign, or the exact values of the Final State Distributions.

6.1.1 χ2 statistic

If the probability distribution for an observation can be approximated by a Gaussian
distribution

p(Xobs|Θ) = Φ(x, µ, σ) =
1

σ
√

2π
exp

(
− (x− µ(Θ))2

σ2

)
, (6.5)

where µ(Θ) is the expectation value predicted by the model, x is each individual
measurement per bin, and σ is the standard deviation. The negative log likelihood
distribution acquires the form

−2 ln L = −2 ∏
i

Φ(x, µ, σ) = ∑
i

(
xi − µi(Θ)

σi

)2

+ const. (6.6)

If then the σ =
√

µ, eq. 6.6 turns to be the Pearson’s χ2 statistic [Pla83]. This
approximation is valid if the probability distribution is Poissonian and the expected
value is high enough µ ' 10.

1Parameters that should be taken into account in the analysis even though they are not the main parameter
of interest, due to interference with those main parameters of interest.
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6.2 Systematic uncertainties

6.1.2 Poisson likelihood

One can also use a Poissonian probability distribution, when the statistics are not high
enough to use the Gaussian approximation, i.e. when the number of counts in some bins
is below 10. Following the work from [BC84], if a Poissonian probability distribution is
used in the likelihood

Lp(Xobs|Θ) = ∏
i

exp
(
−λ(Θ)i

)
λ(Θ)xi

i /xi!, (6.7)

where λ(Θ) is the number of events in each bin predicted by the model. Applying
the likelihood ratio test for the goodness of fit, the resulting χ2 statistic is

χ2
p = 2 ∑

i
(λ(Θ)i − xi + xi ln

(
xi/λ(Θ)i

)
). (6.8)

This kind of χ2 is also be implemented in SAMAK. The disadvantage being that all
of the framework of covariance matrices, in which SAMAK relies on for the technical
implementation of systematic uncertainties (discussed in the next section), cannot be
applied.

6.2 Systematic uncertainties

According to [Sin03] systematic uncertainties (or sometimes called just “systematics”)
are uncertainties associated with the nature of the measurement apparatus, assumptions
made by the experimenter, or the model used to make inferences based on the observed
data. In SAMAK they are accounted for through a covariance matrix approach. In
the case of First Tritium, this treatment is explained and discussed in the currently
unpublished master’s thesis of Lisa Schlüter (2019) and the SAMAK Technical Note
[Las18].

6.2.1 Covariance Matrix Approach

The covariance matrix M is a 2D array whose element in the i, j position represent the
covariance from the i and j elements of a vector of random variables X = [x1, x2, . . . xn]

M =


V[x1] cov[x1, x2] cov[x1, x3] . . . cov[x1, xn]

cov[x2, x1] V[x2] cov[x2, x3] . . . cov[x2, xn]

. . . . . . . . . . . . . . . . . . . . . . . . . . .
cov[xn, x1] cov[xn, x2] cov[xn, x3] . . . V[xn]

 , (6.9)

where cov[xi, xj] = E[xi, xj] − E[xi]E[xj], and E[xi] is the expectation value for the
random variable xi. The function V[xi] is the variance and is equal to V[xi] = cov[xi, xi].

The covariance matrix takes into account bin-to-bin correlation among systematic
uncertainties, and can also include uncorrelated systematic and statistical uncertainties
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in the main diagonal. It should be noted that the covariance matrix formalism applies
only to Gaussian distributed variables, whose errors are propagated linearly. With large
statistics and rather low systematics, the KATRIN Experiment complies with both.

6.2.2 Multipixel χ2 with covariance matrix

As explained in chapter 5, the KATRIN Focal Plane Detector is divided in 148 pixels,
and this is taken into account in the χ2 for the multipixel fit, in which the 148 spectra
recorded by the detector are fitted simultaneously (300 parameters: 1 neutrino mass
squared, 1 endpoint, 148 overall normalizations, and 148 mean background rates). In
addition, the correlated uncertainties are encoded in the covariance matrix. Finally,
following [Las18], the χ2 function to minimize in SAMAK is,

χ2(Θ) =
np

∑
p

ni

∑
i

ni

∑
j
(x(p)

i − µ(Θ)
(p)
i )M(p)

ij (Xobs)(x(p)
i − µ(Θ)

(p)
i ), (6.10)

where the superscript p refers to the pixel number, and np is the total number of
pixels analyzed (maximal 148), ni is the number of energy bins in which the integral
β-decay spectrum is divided. The covariance matrix M already contains both statistical
uncertainties as well as systematic uncertainties including bin-to-bin correlations.

Generally M depends on Θ, but if the predicted number of events is large, the
statistical uncertainty in M can be estimated from the number of measured events

M = Msys +
√

Xobs · δij, (6.11)

where Msys is the covariance matrix that includes only the systematic uncertainties,
and δij is the Kronecker delta. Likewise, if the systematic variances and covariances are
not very sensitive to the values of Θ, then this could be approximated in M by their
best-fit prediction. Thus, the dependency on Θ of M can be neglected.

6.2.3 Fitting Procedure

We estimate the values of the fitted parameters Θ by performing a χ2-fit using eq. 6.10.
The parameters for best fit Θbf are found by minimizing eq. 6.10 as a function of Θ. The
∆χ2 statistic is then defined as the exploration of the region around the minimum of
said χ2(Θ) function

∆χ2(Θ) = χ2(Θ)− χ2(Θbf). (6.12)

In the large sample limit, Θbf are Gaussian distributed about their true value and the
∆χ2 follows a χ2 distribution with NDoF = ni · np − nΘ degrees of freedom, where nΘ

is the number of parameters fitted. The confidence level is ascertained by the range of
values of Θ that make ∆χ2(Θ) be less than some tabulated value. Moreover, when the
predicted number of events in each bin is large enough, the minimum of the χ2 follows
a χ2 distribution with NDoF degrees of freedom.
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One of the applications of SAMAK is to estimate the sensitivity to the physics param-
eters of interest, based on simulations. In this case those parameters are the electron
antineutrino mass and the endpoint of the tritium β-decay spectrum. Here I present
three different sensitivity studies.

• A benchmark study with the configuration in the Design Report [Col05], to
show that SAMAK also confirms the original sensitivity of 0.2 eV for the electron
antineutrino mass with 90 % C.L.

• An updated sensitivity study for the 3 year measurement, taking into account the
current knowledge of the background and a proposal of a new magnet config-
uration, but keeping the rest as described in the Design Report [Col05]. Recent
measurements [Pol18] have shown that the background level is around 400 mcps.

• Yet another sensitivity study for the 3 year measurement, with the current back-
ground and a new proposal of the magnet configuration, but using an extended
measuring time distribution (MTD). The rest of the parameters are then taken
from the Design Report [Col05].

7.1 Sensitivity in Design Report

For this study the model was set up using the benchmark settings specified in table 7.1.
I produced 10,000 different spectra, each one with random statistical fluctuation in

the form of

SB,fluct(qU) = (Stheo(qU) + B) + randqU ·
√

Stheo(qU) + B, (7.1)

where SB,fluct is the fluctuated integral spectrum including the background at each re-
tarding potential, Stheo is the theoretical spectrum model in SAMAK, B is the background
taken as constant in each qU bin (independent of the retarding potential), and randqU

is a function that produces an array with random numbers drawn from a Gaussian
distribution centered at 0, with an standard deviation of 1. The array size is according
to the number of retarding potential bins the spectrum is divided into.

I fit the KATRIN model to each spectra, with four free parameters: neutrino mass
squared, endpoint, background and overall normalization (as explained in chapter 6).
Then I analyzed the distributions of the 10,000 values of each fitted parameter. For
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Table 7.1 | KATRIN Benchmark Settings. For the 3 year measurement for the neutrino mass
[Col05].

KATRIN 3Y Benchmark Configuration [Col05]

Total measuring time 3 years
Time Distribution [-30,+5] eV from E0 See fig. 7.2

Magnetic Fields

- Analyzing Plane (Bana) 3 G
- Pinch (Bmax) 6 T
- Source (Bs) 3.6 T

Column Density 5× 1017 molecules
cm2

TT molecular fraction 90 %
DT molecular fraction 5 %
HT molecular fraction 5 %
Inelastic Scattering Cross Section 3.45× 10−22 m−2

Number of scatterings 10
Mean detector efficiency 0.95

Final States Distribution

TT by SAENZ [SJF00]
DT by DOSS [DT08]
HT by SAENZ [SJF00]

Theoretical Corrections

Fermi function Applied
Radiative corrections Applied
Screening corrections Not applied
Finite extension of nucleus Applied
Weak interaction finite size Applied
Electron-electron exchange Applied
Recoil Coulomb Applied
Synchrotron radiation Applied

Background

Background type flat, 10 mcps

Theoretical Input

mν true value 0 eV

E0 true value 18575 eV
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Figure 7.1 | m2
ν dist. DR. Results from 10,000 Monte Carlo trials using the configuration given

in the Design Report [Col05], m2
ν distribution.

large samples, I deduce the confidence interval on the neutrino mass by analyzing the
frequency of occurrence of the fitted values.

The distribution obtained for the neutrino mass squared can be fitted by a Gaussian
distribution with an standard deviation of 0.0185 eV2 (fig. 7.1). In a Gaussian distribution,
the 90 % C.L. will be found at 1.64σ, by the fraction of the distribution such that
|m2

ν/σ| ≤ 1.64. This means that, including the systematic budget for the neutrino mass
calculated in the Design Report [Col05] of 0.017 eV2, the upper limit of the neutrino
mass with 90 % C.L. is at

√
1.64
√

0.01852 + 0.0172 = 0.2 eV. This is the value expected
in the Design Report [Col05]. This study validates the simulation in SAMAK.

7.2 Updated sensitivity on the neutrino mass squared and
endpoint for 3 years of data taking

In this section I will present the sensitivity studies with the latest KATRIN input for the
analysis.

The main KATRIN figures that are used in the model are the same as those in table
7.1, except for two entries: the magnetic field in the analyzing plane is now 9 G instead
of 3 G, and the background is ∼400 mcps. These settings are pessimistic for several
reasons:

• The increased value of Bana would be applied to reduce the flux tube volume, in
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Figure 7.2 | MTD DR. Measuring Time Distribution optimized for the Design Report [Col05]
settings.

turn reducing the background induced by electrons coming from the inner walls
of the main spectrometer vessel.

• Even tough Bana is increased, I assume conservatively that this has no effect in the
background. Research is still ongoing on this.

• I use a MTD optimized for a background of 10 mcps, therefore it may not provide
the best sensitivity in the current background conditions.

The Focal Plane Detector is treated as a single pixel (unsegmented FPD, chapter 5).
Since the uncertainty of the inhomogeneities of the magnetic and electrostatic fields are
already taken into account in the systematic uncertainty budget for the squared neutrino
mass, there is nothing gained by using a ring or pixel analysis at this simulation stage.

Doing the same procedure as in the previous section (7.1), after three years of data
taking, the statistical uncertainty is σstat = 0.0958 eV2 and the new upper limit that
could be set if no neutrino mass is found is 0.396 eV at 90 % C.L. The upper limit was
calculated by taking the systematic budget from the Design Report of 0.017 eV2,σtot =√

0.09582 + 0.0172, and L(90%C.L.) =
√

1.64σtot.
In fig. 7.3 the distributions of the effective neutrino mass squared and the effective

endpoint of the spectrum are shown. One should not take this estimate as the new
KATRIN sensitivity. Again, this study was set under pessimistic conditions, and there
are more successful approaches one can take to overcome this adverse situation with the
background, like enlarging the qU scanning range.

The rule of thumb given in the Design Report [Col05], is that the statistical accuracy
of m2

ν scales with the background rate as Γ1/5. If we have

σν(Γ = 0.01 cps) = αΓ1/5 = 0.0185. (7.2)
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where α is the scaling factor and in this case is α = 0.0465. The new σstat is σstat =

0.0465 · (0.4065)1/5 = 0.04. That would be an estimate of the sensitivity given that only
the background changed. The energy resolution ∆E in the main spectrometer is also
worsened by the new Bana. With the new configuration it would be ∆E = 2.79 eV, instead
of 0.93 eV, which leads to the current sensitivity obtained with this simulation obtained
from the Monte Carlo Experiment.
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Figure 7.3 | m2
ν and E0 dists. with current background rate. Results from 10,000 Monte Carlo

trials for the most updated experimental knowledge for KATRIN. (a) Distribution of the fitted
neutrino mass squared. (b) Distribution of the fitted endpoint. No anomalies present.
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Figure 7.4 | Normalization and background dists. with current background rate. Results
from 10,000 Monte Carlo trials. (a) Distribution of the fitted background. (b) Distribution of the
fitted normalization. No anomalies present.

The distributions of the other fitted parameters, background and overall normalization,
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are also as expected (fig. 7.4), and do not show any anomalies. The background is
centered around at its true value of 405.6 mcps, and of course the normalization
distribution should peak at 1.

As mentioned, a method to improve the sensitivity under these conditions is to extend
the qU scan range and re-optimize the MTD. As the re-optimization of the MTD for this
background level is not yet available, I work only with the extension of the scan range
in the next section.

7.2.1 Using an extended qU range for the analysis

One way of reducing the statistical uncertainty on the fitted parameters is to increase
the energy range; which may lead to an increase in the systematics. Nonetheless, For
the following I will assume that the spectrum modeling is equally well known in the
extended range of -60 eV below the endpoint as it is in -30 eV below the endpoint, as
described in the Design Report [Col05]. The systematic budget for the m2

ν had room for
unexpected uncertainties already, so I optimistically assume that it is not surpassed.

Figure 7.5 Flat 60 MTD
Simple Measuring Time Distribution with an extended range until -60 eV below the

endpoint.

Since there is not yet an optimized time distribution for the experimental conditions
found out in the First Tritium Campaign, I will use the simple case of a flat distribution.
This means that the same time fraction is spent in each retarding potential, and the steps
of the retarding potential are unitary between [-18515,-18580] V, see fig. 7.5. Otherwise,
the conditions for the Monte Carlo simulations are described in table 7.1, with the
exception of the background which is ∼400 mcps for this study, and Bana = 9 G. The
resulting integral spectrum is in fig. 7.6. On the last bin, at -60 eV, ∼ 3.7× 108 counts
have accumulated, while IS(qU = E0 − 30 eV) ≈ 3× 107 counts. An increase of around
one order of magnitude.
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Figure 7.6 | Integral tritium βspectrum. Three years of
data, flat distribution from [-60,+5] eV in steps of 1 eV.

The results indicate that the
neutrino mass has a statistical un-
certainty of σstat = 0.0546 eV2.
That is a bit more than half the
value of the uncertainty from the
optimized scanning strategy un-
til -30 eV. Taking the same system-
atic uncertainty as before (0.017
eV2), the improved upper limit
would be 0.3 eV. This value can be
further improved by doing an op-
timized scan of the energy spec-
trum. The distributions for the
neutrino mass and endpoint are
in fig. 7.7. It should be noted
too that the endpoint in this sce-
nario is known with an statistical
uncertainty of 2 meV, still to be
checked with the systematic budget for the endpoint, mainly the unknown work funtion
on the rear wall (the latest value in the literature for the uncertainty on the endpoint is
70 meV by [Mye+15]).
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Figure 7.7 | m2
ν dist. for an extended qU range. Results from 10,000 Monte Carlo trials for

the extended scanned energy range. (a) Distribution of the fitted neutrino mass squared. (b)
Distribution of the fitted endpoint.
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Figure 7.8 | m2
ν dist. FT. Distribution of fitted neutrino masses squared with the First Tritium

settings, but simulated data.

7.3 Sensitivity on the neutrino mass squared in the First
Tritium Campaign (Simulation)

The sensitivity to the neutrino mass in the First Tritium Campaign is expected to be
poor with respect to the current knowledge, and not competitive with the latest values
from the literature [Kra+05] [Lob+01]. However, it is interesting to study the sensitivity
using current slow control data and KATRIN settings. In order not to bias the course of
the analysis, instead if using real data, I perform a Monte Carlo study as explained in
sec. 7.1 using the SAMAK model, which has been proven to reproduce well the data.

To make matters closer to reality, I will exclude in all of the following simulations the
two outer rings. They showed a significantly different behavior from the rest, with a
very reduced number of counts detected.

The settings used in the SAMAK Model are explained in table 7.2.
The covariance matrix used for this sensitivity study contains the most updated

knowledge in SAMAK about the systematic effects of the First Tritium Campaign. More
details can be found in table 9.3 in chapter 9.

To account for both systematic and statistical uncertainties, the fluctuated spectrum is
built as

SB,fluct(qU) = (Stheo(qU) + B) + rand ·
√

Stheo(qU) + B + r(R ·~1), (7.3)

where everything is the same as in equation 7.1 except for the last additive term, in
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Table 7.2 | Settings for FT sensitivity study. Settings in the SAMAK Model for the First Tritium
Sensitivity Studies, slow-control parameters taken from the Run Summaries.

KATRIN Configuration

Input Value

Total measuring time 464956 seconds (∼ 5.38 days)
Time Distribution [−1600,+40] eV from E0. See fig. 9.1
Magnetic Fields
- Analyzing Plane 6.302 G
- Pinch 4.2 T
- Source 2.52 T
Column Density mean 4.598× 1017 molecule

cm2

TT molecular fraction ∼ 0.01 %
DT molecular fraction ∼ 1.04 %
HT molecular fraction ∼ 0.05 %
Inelastic Scattering
Cross Section 3.45× 10−22 m−2

Number of scatterings 10
Mean detector efficiency 0.95
Work Function 0 V

Final States Distribution

TT by SAENZ [SJF00]
DT by DOSS [DT08]
HT by SAENZ [SJF00]

Theoretical Corrections

Fermi Function Applied
Radiative Corrections Applied
Sychrotron Radiation Applied

Background

Background type flat at 406.5 mcps

Theoretical Input

Endpoint 18573.7 eV
Neutrino mass 0 eV
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which CM is the covariance matrix of First Tritium, R is transpose conjugate of the upper
triangular matrix of the Cholesky factorization1 of the covariance matrix CM = R∗R,
~1 is a vector of ones, with equal number of elements as there are qU bins, and r is a
random number between 0 and 1, from the MATLAB® function randn [MAT18].

First off let us have a look at the sensitivity with the unsegmented FPD. The resulting
distribution (fig. 7.8) has a σ = 15.5 eV2, which already includes the statistical and the
systematic uncertainty. Similarly to the sensitivity studies for the 3-year measurements,
making the assumption that the fitted squared neutrino mass values are Gaussian
distributed, 90 % of the distribution, lies within approximately 1.64σ from the mean
value. Taking the square root of that value would give us the sensitivity to the neutrino
mass.

√
1.64σ ≈ 5 eV C.L.(90%) (7.4)

This means that neutrino masses above 5 eV could in principle be discarded with the
First Tritium data set. That is already an interesting limit, albeit not more precise than
the latest experiments from Mainz and Troitsk [Kra+05] [Lob+01], which set the upper
limit at 2.3 eV at 95 % C.L.

For completeness:

• I used the “long range” in the analysis ([−1600,+40] eV from E0), which is actually
not fully understood and not perfectly modeled with SAMAK at energies below
-200 eV from E0.

• I simulated the data as if it were taken in just a single run. In reality the data
taking is divided into several runs, which leads to small differences in the slow
control parameters from run to run. The combination of these runs is not trivial
and has been neglected in this study.

• The systematics of the First Tritium Campaign, in spite of an intense dedication
to identify them, are still not final (explained in [Las18] and in the unpublished
master’s thesis of Lisa Schlüter).

1The Cholesky factorization of a covariance matrix (or, more generally, any Hermitian positive definite
matrix) M is an upper triangular matrix R such that R∗R = M. A vector of uncorrelated variables are
thus correlated if transformed by the matrix multiplication XR∗ [IC82].
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The KATRIN analysis team has developed several independent tools to analyze the data
produced by the experiment. From these, there are several which specialize in fitting the
data close to the endpoint. Those currently working on the First Tritium data are:

• SSC+KaFit (Source Spectrum Calculation, C++, official)

• Fitrium+FitnessStudio (Fit Tritium, C++ and Python)

• BAT+FitnessStudio (Bayesian Analysis Toolkit, C++ and Python)

• SAMAK (Simulation and Analysis with MATLAB® in KATRIN, MATLAB®)

All of these tools are still undergoing upgrades now and then1, and it is imperative to
check that each tool fits the data correctly, and that there were no mistake in the process
of upgrading. One way of doing this is through a so called “Data Challenge”, which
will be explained in the next section.

8.1 Data challenge

In the KATRIN Collaboration, the data challenge is a process in which the same KATRIN
data set, either real or simulated, is fitted by each one of the analysis tools, with the goal
of obtaining the same results within a predefined tolerance. Up to the time of writing,
there have been four data challenges.

• Krypton Data Challenge,

• Tritium Data Challenge,

• Bootcamp with spiked data (First-Tritium-like data), and

• Bootcamp with Monte Carlo data (3-year-measurement-like data).

For the four cases, the data was simulated, and statistical fluctuations were added.
The Tritium Data Challenge and the Bootcamp with Monte Carlo Data, in which I took
part, will be explained in the next sections.
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8 Data Challenge and Bootcamp

Figure 8.1 | KATRIN response function from SSC. KATRIN response function for the Tritium
Data Challenge provided by SSC.

8.2 Tritium Data Challenge

In this challenge, the goal is to test all of the analysis tools against each other. The
procedure to successfully participate is the following:

1. Each participant team provides a KATRIN spectrum following the benchmark
parameters found in table 8.1.

2. (Optional) Fit 1000 spectra with known true values produced by SSC, and confirm
that the distributions of the free parameters were Gaussians centered at the true
value. The free parameters are the (electron anti) neutrino mass squared, the
endpoint of the β-spectrum, the overall normalization and the background.

3. Each participant team provides a KATRIN spectrum also following table 8.1,
but with some differences: first, the addition of Poisson randomized statistical
fluctuations; and second, true values for fitted parameters (same as previous point),
which the other tools would try to find through a fit. The true values are kept
secret until an unblinding meeting.

4. All of the teams fit all of the provided spectra with statistical fluctuations (even
their own).

5. All of the teams provide the best values for the fitted parameters together with the
corresponding uncertainties, and plots showing the spectrum and the residuals.

In total, four teams participated2

1Actually the SAMAK package has been significantly upgraded. The SAMAK version used in the data
challenges might not be representative of the current version.

2At that time, beginning of December 2017, Fitrium and BAT were not sufficiently developed yet.
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Table 8.1 | Data Challenge. KATRIN model config. for the Tritium Data Challenge.

KATRIN Conf. Range for true value

Total measuting time 3 years
Time Distribution Flat [-30,+5] eV from E0, 1 eV steps

Magnetic Fields

- Analyzing Plane 9 G
- Pinch 6 T
- Source 3.6 T

Column Density 5× 1017 molecule
cm2

TT molecular fraction 100 %
DT molecular fraction 0 %
HT molecular fraction 0 %
Inelastic Scattering
Cross Section 3.45× 10−22 m−2

Number of scatterings 10
Mean detector efficiency 0.9

Final States Distribution

TT by DOSS [DT08]
DT Not applied
HT Not applied

Theoretical Corrections

Fermi Function Applied

Background type flat, fitted par. [200,400] mcps

Response Function provided by SSC (fig. 8.1)

Theoretical Input

m2
ν 0 eV2, free par. [0,0.04] eV2

E0 18575 eV, free par. [18574.7,18575.3] eV
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• SSC/KaFit 1 with Dominik Fuchs

• SSC/KaFit 2 with Moritz Machatschek, Wonqook Choi, et. al.

• Susanne’s Fitter with Dr. Susanne Mertens

• SAMAK with Pablo I. Morales Guzmán (me)

8.2.1 Results

 Fitter → SAMAK (minuit) KaFit 1 KaFit 2 Susanne Fit

Model ↓ Variable Value Error Value Error Value Error Value Error Unit

SAMAK mν² 0.03 5.2E-02 0.03 4.9E-02 -0.03 5.5E-02 0.04 1.0E+00 eV²

Pablo Endpoint 18574.95 3.8E-03 18574.95 3.7E-03 18574.87 4.0E-03 18574.95 1.9E+04 eV

Normal. 1.00 8.4E-05 1.02 3.7E-04 1.02 4.0E-04 1.04 1.0E+00

Bckgd. 0.25 9.8E-05 0.25 9.7E-05 0.25 9.9E-02 0.25 1.0E-01 cps

χ² 32.15 32 (DoF) 31.93 32 (DoF) 31.26 32 (DoF) 50.52 32 (DoF)

SSC 1 mν² 0.08 8.0E-02 0.07 2.2E-02 0.01 6.5E-03 3069.01 1.5E-01 eV²

Dominik Endpoint 18574.71 5.5E-03 18574.70 2.4E-03 18574.62 1.6E-03 18572.68 9.1E-03 eV

Normal. 0.96 9.1E-05 1.00 3.0E-04 1.00 2.0E-04 1.17 4.9E-04

Bckgd. 0.40 1.3E-04 0.40 1.1E-04 0.40 1.1E-01 0.40 1.2E-04 cps

χ² 22.54 32 (DoF) 22.65 32 (DoF) 23.34 32 (DoF) 9186.13 32 (DoF)

SSC 2 mν² 0.20 4.4E-02 0.16 2.3E-02 0.10 4.0E-03 0.12 1.5E-03 eV²

Moritz Endpoint 18575.27 3.3E-03 18575.33 2.1E-03 18575.25 1.4E-03 18575.33 3.0E-03 eV

Wongqook Normal. 1.01 8.1E-05 1.00 2.5E-04 1.00 2.0E-04 1.02 3.2E-04

et al. Bckgd. 0.22 9.1E-05 0.22 8.5E-05 0.22 8.3E-02 0.22 8.9E-05 cps

χ² 27.65 32 (DoF) 28.15 32 (DoF) 26.25 32 (DoF) 54.00 32 (DoF)

Susanne mν² 0.09 8.6E-03 0.21 4.5E-02 eV²

Sim Endpoint 18575.01 1.4E-03 18575.00 4.8E-03 eV

Normal. 0.97 7.0E-05 1.00 5.4E-04

Bckgd. 0.10 5.7E-05 0.10 5.6E-05 cps

χ² 68.38 32 (DoF) 31.18 32 (DoF)

Figure 8.2 | Results of the Tritium Data Challenge. On the left column are the models and on
the top are the fitters. The main diagonal in light green the fitter fitting its own model. The
number on the “Error” column is the uncertainty for each parameter, given by the fitter. For the
case of the χ2, this number is the degrees of freedom.

The unblinding meeting took place on the 25th of January 2018. By the time of the
unblinding not all teams had the chance to fit all spectra, but the almost complete results
were enough to learn something from the event. The true values chosen by the different
teams are in table 8.2.

After a first trial, where it was discovered that the uncertainties in KaFit were not
being calculated correctly, the final results in tabular form are in fig. 8.2.
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8.2 Tritium Data Challenge

SAMAK KaFit 1 KaFit 2 Susanne

mν² 0.22 0.11 -0.96 0.02

Endpoint 0.13 -0.07 -20.00 0.00

Normal. -0.18 50.36 50.00 0.04

Bckgd. 0.66 0.65 0.00 0.00

mν² 0.81 2.56 -0.63 19996.32

Endpoint 0.92 1.70 -49.38 -221.90

Normal. -486.72 -1.27 20.00 344.86

Bckgd. 0.35 0.40 0.00 9.84

mν² 3.91 5.72 18.28 57.74

Endpoint 8.02 41.22 3.57 29.22

Normal. 152.80 -18.79 0.00 55.46

Bckgd. 0.26 0.26 0.00 1.01

mν² -10.92 0.68

Endpoint 3.90 0.04

Normal. -494.88 0.01

Bckgd. 0.83 1.58
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Figure 8.3 | Results of the Tritium Data Challenge. The number in each space represents how
far the fitted value was from the true value in terms of the uncertainty given by the fitter. Values
larger than 1 and less than -1 are highlighted in red, meaning the challenge was unsuccessful for
that combination of model-fitter-parameter.

For this data challenge, the tolerance chosen to confirm if the data was correctly fitted,
was the uncertainty of each fitter. A practical display of the results can be seen in table
8.3. It shows how far away is the fitted parameter in comparison to the true value in
terms of the uncertainty of each fitter p = (Xfit − Xtrue)/σfit. If its absolute value was
less than one, then the challenge was succeeded, if not, it was failed.

As can be seen in fig. 8.3 there were a lot of discrepancies to be understood. This
called for a detailed inspection of the modeling, to see if any of the input given was
being overwritten by default settings at some point. It was discovered that the models
were using slightly different versions of the KATRIN response function, which could
explain the dissimilarities.

On the other side, all fitters could find the true background in all but one case
(Susanne fitting SSC1). SAMAK was the code to find the most true values from the other
codes, except for the normalization from the SSC models, which is calculated using a
completely different approach in both codes, and the endpoint from SSC/KaFit 2.

8.2.2 Follow-up Data Challenge without statistical fluctuations

To alleviate the situation and further investigate the modeling, a small follow-up data
challenge was performed. Only two teams participated, SSC and SAMAK. The models
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Table 8.2 | True values. True values of the parameters m2
ν, E0, N, and B, chosen by the different

teams participating in the Tritium Data Challenge.

(a)

Truth

Variable Value Unit

SAMAK

m2
ν 0.0225 eV²

Endpoint 18574.95 eV
Normal. 1
Bckgd. 0.25 cps

SSC1

m2
ν 0.0121 eV²

Endpoint 18574.7 eV
Normal. 1
Bckgd. 0.4 cps

(b)

Truth

Variable Value Unit

SSC2

m2
ν 0.030893 eV²

Endpoint 18575.246 eV
Normal. 1
Bckgd. 0.222 cps

Susanne

m2
ν 0.18 eV2

Endpoint 18575 eV
Normal. 1
Bckgd. 0.1 cps

Figure 8.4 | Results from the follow-up data challenge. SAMAK fitting the SSC model. Top
left: data from SSC, spectrum from SAMAK. Bottom left: Residuals. Right: True values from
SSC and fitted values from SAMAK.

were the same as in table 8.1, except for the fact that statistical fluctuations were not
applied, to eliminate any possible biases from the random fluctuations.

The results obtained by SSC, after doing a fit from SAMAK data, are shown in fig. 8.5.
Accordingly, the results from SAMAK fitting SSC data are in fig. 8.4. All values where
found within uncertainties except for a slight deviation in the normalization, which
again, is calculated very differently in both models. The analysis tools were deemed
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8.2 Tritium Data Challenge

then ready for the Bootcamp.

Figure 8.5 | Results from the follow-up data challenge. SSC fitting the SAMAK model. Top
left: data from SAMAK, spectrum from SSC. Top right: Residuals. Bottom: True values from
SAMAK and fitted values from SSC. Plots and table provided by Wonqook Choi.

8.2.3 Conclusion and Further Work

The Trititum Data Challenge was the first quantitative comparison if the different fitters.
It was beneficial in the sense that it made the participating teams more aware of the
inner workings of each code. It also showed the importance of understanding the
differences among the analysis tools. It was also agreed that the uncertainties provided
by minuit with the MIGRAD option could be unreliable as they are approximations
using numerical derivatives.

Since the Tritum Data Challenge occurred, there were two other events that enhanced
the development of SAMAK and SSC: the Bootcamp, described later, and the First
Tritium Campaign. For this reason it is likely that the results from this Data Challenge
are no longer relevant. There are also plans to perform new data challenges with data
from the First Tritium Campaign and/or simulations, incorporating the new analysis
tools that have been developed along the way.
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8 Data Challenge and Bootcamp

8.3 Bootcamp

The Bootcamp was a preparation event for the first real KATRIN data. Different teams
would receive tasks as similar as possible to what would happen on the day of the first
data taking. One of these tasks was to analyze the KATRIN data in the form of Run
Summaries (sec. 5.2.1). The data in the Run Summaries had a pixel-wise segmentation,
that is to say, there was one tritium β-decay spectrum for each pixel in the detector,
148 in total. Until then, SAMAK had not analyzed (simulated nor real) tritium data
pixel-wise, so it was an effective boost to incorporate this functionality into SAMAK.

On task was to analyze data for a few hours of measurement, but this had too low
statistics to be used for the multipixel case effectively. On the other hand, the task to test
the different analysis tools and the analysis of the detector segmentation was to fit one
3-year data set, divided into several Run Summaries, and find the true values hidden in
the simulated data. The model for the simulated data was produced by SSC, and it was
the same as in table 8.1 with the exception of the magnetic field in the analyzing plane
being 6 G instead of 9 G, and the number of scatterings considered being 5 instead of 10.

8.3.1 Results

Each team presented its own results on the last day of the 34th KATRIN Collaboration
Meeting (February 24th, 2018). I here present the results obtained by SAMAK. At that
time a proper multipixel fit among all the pixels could not be performed, and in its place
an iterative single pixel fit was used. In this kind of fit, each pixel is fitted independently
and the final answer is a weighted mean among the fitted values, the weights being the
inverse square of the uncertainties. The fit was successful3, but the fitted values were
slightly off, due to a combination of using a different modeling in both codes and using
a mean response function. The results can be seen in table 8.4.

Table 8.4 | Bootcamp results. Fitted values found by SAMAK and true values in simulated data
from the Bootcamp Data Challenge. The true value for the background was 0.287 cps for the
whole detector, the distribution per pixel was taken from real measurements.

Parameter Fitted Value True Value Unit

m2
ν 1.285 ± 0.024 0.42 eV2

E0 18575.14 ± 0.001 18575 eV
Bckg. per pixel 0.002 ± 0.0 ∼ 0.002 cps
Norm. 1.21 ± 0.0 1

Since this was a 3 year measurement, the statistical uncertainty was small (Sunc/S ≈
2× 10−4 at -30 eV from the endpoint, where Sunc is the uncertainty on the counts and S
the number of counts), so every known effect that could alter the spectrum should be
taken into account. Contrary to this, SAMAK used only one KATRIN response function

3Which at that time was already a good accomplishment.
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8.3 Bootcamp

Figure 8.6 | Bootcamp results FPD. Left: FPD View of the bias of the fitted E0 from 18575 eV.
Right: fitted m2

ν. The correlation between the two parameters is visible in the similar patterns
both plots present.

Figure 8.7 | Bootcamp results dist.. Distribution of the four fitted parameters in the Bootcamp
Data Challenge with the 3-year data set per pixel: m2

ν, E0, overall norm. and background.

for all pixels, where it is a pixel-dependent function. This was done because the response
function was provided in a file by SSC.

A preliminary version of the multipixel fit was also tested, and more work will be
necessary to guarantee the robustness of the analysis. It consisted in fitting first the 148
backgrounds (one per pixel), then giving them as a fixed input for a second fit which
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8 Data Challenge and Bootcamp

looked for the neutrino mass squared, the endpoint, and the 148 normalizations (one
per pixel). The fitted neutrino mass for such a fit was mν,fit = 0.57± 0.04 eV2, which is
much closer to the true value. As can be seen, the fitting strategy does play a role in this
case.

In fig. 8.6 one can see the Focal Plane Detector “heat-map” view of the fitted endpoint
and neutrino mass squared for the iterative single pixel fit. The correlation between
both parameters can be appreciated qualitatively as one follows the pattern from the
other. Fig. 8.7 shows the distribution of the fitted parameters for all pixels. It can
already be detected that there were some anomalies with the fit as the distributions
cannot be recognized at a glance. Especially the normalization and the background
show this problem. This could again be explained, at least partially, by the use of only
one response function in SAMAK, or differences in the modeling. The value fitted
for the normalization at that Data Challenge is 1 + Nfit, which meant SAMAK needed
∼ 20 % more counts to reach the count number given by SSC. This was due because
of the modeling of the normalization. At that time SAMAK relied on some tabulated
values to calculate the cumulative fraction, which were not updated regularly because
the normalization is a free fitted parameter in any case, as the activity of tritium is not
known precisely. Currently this normalization is calculated according to the settings for
each model, and is not read from a table anymore (sec. 4.2.3).

8.3.2 Conclusion and Further Work

We focused afterwards on the preparation to analyze real first tritium data, including
a response function per pixel and per retarding potential calculated within SAMAK.
Also, currently it is possible to perform multipixel fits with all of the parameters (300+)
simultaneously, which would make use of all the information available in the data. This
event was nevertheless fruitful because it kickstarted the development of more advanced
fitting techniques that incorporated the segmentation in the KATRIN detector, the
reading and converting of KATRIN data in a format usable by SAMAK, and highlighted
the importance of understanding the difference between the different analysis tools in
KATRIN.

A new data challenge is being planned, to deal with the First Tritium data, and will
be tied with the testing of different data blinding schemes.
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9 First Tritium Analysis

The “First Tritium Campaign” in KATRIN is, as the name suggests, the first time when
tritium was injected into the WGTS and qU-scans were performed to measure the first
integrated tritium spectrum and test the almost final set-up of whole the experiment1.
There are some differences with respect to the KATRIN nominal settings though, the
most important of those being the fact that DT was used instead of TT, and its molecular
fraction was 1 %. The column density (sec. 3.1.2) was close to the nominal column
density. In the next section more details about the experimental set-up are given.

The First Tritium Campaign started on the 5th of June and ended on the 18th of the
same month. During this campaign, the data was collected and distributed in 119 runs2.
From those runs, 24 were 1-hour runs, 64 were 1.5-hours runs, and 31 were 3-hours runs.

Some of the runs can also be used with the purpose of giving an estimate on the
column density with the data, the value of which is paramount in the data analysis for
KATRIN, for it is needed to accurately estimate the inelastic scatterings of electrons off
atoms in the gaseous source (that are inside the computation of the KATRIN response
function, see sec. 4.4.4). Currently, the absolute value can only be approximated by
the buffer vessel pressure and/or the throughput of the WGTS loop system [Hei18].
This will not be the case for future data-taking, as an electron gun will be installed to
measure the column density with high precision, by measuring the response function at
different points, then applying a sophisticated deconvolution process.

9.1 KATRIN set-up and configuration for the First Tritium
measurements

For the first tritium measurements, the nominal KATRIN setting was disfavored; in
its place, a less risky configuration was chosen, just 1 % molecular fraction of DT was
injected in the WGTS. This occurred in order to, among other things, mitigate the impact
of any unexpected incident with tritium, which indeed did not occur. The main settings
needed for the SAMAK model are stated in table 9.1.

The time distribution was design to be multi-purpose. Contrary to the Nominal
KATRIN settings in which the spectrum is scanned down to -30 eV (or -60 eV) below the
endpoint, for the First Tritium Campaign, the range was enlarged to -1.6 keV below E0.
One of the reasons for the largely extended range was to increase the overall statistics.

1Actually the very first time was during the “Very First Tritium Campaign”, but the statistics from the
First Tritium Campaign are much higher and so, only results from the latter are shown in this work.

2There were a few more runs (127) but some had issues and were left out of this analysis.
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9 First Tritium Analysis

Table 9.1 | SAMAK configuration for First Tritium. SAMAK configuration for First Tritium
for the data analysis and modeling.

Input Value Comment

KATRIN Configuration

Time Distribution See fig. 9.1 obtained from Run Summary
Magnetic Fields
- Analyzing Plane 6 G obtained from Run Summary
- Pinch 4.2 T obtained from Run Summary
- Source 2.52 T obtained from Run Summary
Column Density ∼ 4.5× 1017 molecule

cm2 obtained from Run Summary
TT concentration ∼ 0 % obtained from Run Summary
DT concentration ∼ 1 % obtained from Run Summary
HT concentration ∼ 0 % obtained from Run Summary
Inelastic Scattering
Cross Section 3.45× 10−22 m−2

Number of scatterings 10
Mean detector efficiency 0.95 fitted in the overall normalization
Work Function 0 V Unknown

Final States Distribution

TT by SAENZ [SJF00]
DT by DOSS [DT08]
HT by SAENZ [SJF00]

Theoretical Corrections

Fermi Function Applied Relativistic
Radiative Corrections Applied
Screening Not applied
Finite Extension of Nucleus Not applied
Weak interaction finite size Not applied
Electron-Electron Exchange Not applied
Recoil Coulomb Not applied
Sychrotron Radiation Applied
Doppler Broadening Not applied

Background

Background type flat Free parameter in fit

Theoretical Input

Endpoint 18573.7 eV Free parameter in fit
Neutrino mass 0 eV Fixed parameter
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9.1 KATRIN set-up and configuration for the First Tritium measurements

With just 1 % of DT and a few days of measurements, the results of scanning until -30 eV
below the endpoint would not have been as meaningful. This enlarged range also serves
to test KATRIN with large statistics, which is also useful of the TRISTAN project, which
will look for sterile neutrinos in the keV range. A plot of the time fraction spent in each
retarding potential can be seen in fig. 9.1. Due to normal operating procedures, the
measurement time changed by several seconds from run to run and subrun to subrun,
compared to the established MTD. Anyways, this is taken into account when doing the
analysis.

Figure 9.1 | FT MTD. Measuring Time Distribution used in the First Tritium Campaign.

The SAMAK framework is optimized to simulate the tritium β-decay spectrum close
to the endpoint, and therefore systematic uncertainties are expected to increase as one
considers data further away below the endpoint. The following systematic uncertainties
are currently under investigation

• the backscattering of the detector,
• the efficiency of the detector at high rates3,
• the Final Excited States Distribution,
• the absolute uncertainty on the column density,
• and the magnetic reflection of β-electrons.

For the following analyses I use the three ranges shown in chapter 5, where the
statistical uncertainty starts to be relevant in the range from 0 to approx. −200 eV below
E0, and dominate only in the range 0 to -50 eV. Further away below the endpoint, the
uncertainties are dominated by systematics, as seen in fig. 9.2.

The run numbers I use for the following sections are in table 9.2. The column density
in them was ∼ 4.5× 1017 molecules

cm2 . They are 71 runs which add up to a total measuring
time of 449,911 seconds (∼ 5.2 days).
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9 First Tritium Analysis

Response Function +FSD +TASR + Theoretical Correction ON/OFF  

 

 
retarding potential  - 18575 eV (eV) 
 

Integral spectrum 
 

Figure 9.2 | Statistical and systematic uncertainties FT. Right: covariance matrix used in
SAMAK for the First Tritium Campaign. “FSD” means Final States Distribution and “TASR”
is the tritium activity per sub run. Right: statistical and systematic uncertainties for the 3-
hour run 40668. Approximately around -50 eV below the endpoint both uncertainties have the
same magnitude normalized to the counts. Below that point, systematics dominate, and above,
statistics dominate. Plot by Lisa Schlüter.

9.2 Systematic uncertainties for the First Tritium Campaign

Table 9.3 shows the systematic uncertainties applied in SAMAK as the time of writing
of this thesis [Las18]. It is important to note that there are several systematics that are
not perfectly understood far away from the endpoint:

• The Final Excited States distribution is known only up to energies of ∼ 200 eV,
and it is still not clear what is the uncertainty on the distribution used in SAMAK.

• The absolute value of the column density is estimated and has an estimated
uncertainty of 8 %. This becomes relevant when fitting only with the statistical
uncertainty, because it becomes small3 at low retarding potentials. Therefore,
any deviations of the model from the data could lead to an increased value of
the goodness-of-fit statistic. If correct, this approach means that these points at
low retarding potentials could have a large influence on the fitted results. More
information on the column density in sec. 9.5.

• The detector system was designed to measure rates of β-electrons with energies
close to the endpoint. As the energies accepted are lower, the rate increases

3There are around 8 million events in the whole detector when the retarding potential is at ≈ −17 kV in a
3-hour run, which means ∼ 600 counts per second per pixel, with a relative statistical uncertainty of
∼ 0.3 permille.
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9.2 Systematic uncertainties for the First Tritium Campaign

Table 9.2 | First Tritium runs used for the analysis. I used the runs with 100 % column density
which were scanned up or down, but not the ones with the random scan.

Run numbers used in the First Tritium analysis

Up scan

40541 40543 40604 40611 40613 40667 40669 40671 40673
40675 40677 40679 40681 40683 40685 40687 40689 40691
40977 40980 40983 40986 40989 40992 40995 41002 41005
41011 41014 41019 41022 41026 41029 41032 40693 41008

Down scan

40531 40540 40542 40603 40668 40670 40672 40674
40676 40678 40680 40682 40684 40686 40688 40690 40692
40979 40982 40985 40988 40991 40994 40997 41007 41013
41016 41017 41020 41023 41025 41028 41031 41010 40976

significantly3, and, even with the correction presented in sec. 9.4.2, the efficiency
of the detector is not totally understood at such high rates.

Table 9.3 | Preliminary Samak Systematics Effects. The uncorrelated parameters were drawn
from a Gaussian distribution independent from other parameters, when applying the multisim
method (unpublished master’s thesis of Lisa Schlüter and [Las18]).

Effect Parameter Rel. error (%) Correlation Method Comment
Response Function

Magnetic fields B_WGTS 2 % uncorrelated
B_Max 2 % uncorrelated
B_AP 2 % uncorrelated

Column density rho.d 8 % uncorrelated Multisim overestimated
z-profile 0 % not included yet
IS cross section ISCS 2% uncorrelated Multisim overestimated
Energy loss A1 0.50% uncorrelated Multisim may be correlated

A 0.54 % uncorrelated Multisim may be correlated
w1 1.10 % uncorrelated Multisim may be correlated
w2 0.80 % uncorrelated Multisim may be correlated
eps1 0.00 % uncorrelated Multisim may be correlated
eps2 0.14 % uncorrelated Multisim may be correlated

Av. over pixels not included yet
Av. over rings not included yet

DT Final State Distributions
Ground st. prob. Pgs 3% with Pes Multisim overestimated
Excited st. prob. Pes Pgs + Pes = 1 Multisim

Continued on next page
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9 First Tritium Analysis

Table 9.3 – Continued from previous page
Effect Parameter rel. error correlation method comment
Excitation prob. Pi 3% uncorrelated Multisim overestimated

Theoretical Corrections
Radiative corr. on/off overestimated
All but rad. corr. on/off overestimated
Doppler on/off negligible
Synchrotron on/off negligible

Background
Rate Fit
Shape deviation from flat data driven

Run Stacking
Multisim data driven

9.3 Stability of slow control parameters

One of the challenges of KATRIN is to maintain stability on certain parameters in order
to achieve the desired precision in the neutrino mass measurement. The First Tritium
Campaign was the perfect opportunity to test this in some of the key parameters, i.e.
column density (defined in sec. 9.5), tritium purity (defined in sec. 4.2.3), and retarding
potential. The stability of the latter is already covered in sec. 5.2.2, the rest is discussed
in the next paragraphs.
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Figure 9.3 | Column density stability. Top: Column density values per run. Bottom: Relative
uncertainty of the column density within one run.

As a reminder, in the Design Report [Col05] the limit on the relative uncertainty of the
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9.3 Stability of slow control parameters

column density is ∆ρd
ρd = 0.1 %. For the runs with column density ∼ 4.5× 1017 molecules

cm2 ,
the average of this relative uncertainty is 0.004± 0.001 % (fig. 9.3), which is well below
the value stated in the Design Report. The column density was estimated from the buffer
vessel pressure [Hei18] and its true value and its absolute uncertainty are only known
with a ∼ 8 % uncertainty. What is plotted in fig. 9.3 is the change of this estimated value
within one run.

Although the LARA system (sec. 3.1.2) was designed to measure the concentrations of
the isotopologues of tritium in a column density of ∼ 5× 1017 molecules

cm2 , with molecular
fractions around 95 % for TT, and 5 % for DT and HT. However, the only isotopologue
used was DT, in about 1 % molecular fraction of the gas in the WGTS, which is far
below the designed working point. The stability of it within each run is seen, as given at
the time of writing by the LARA team, in fig. 9.4, together with its relative uncertainty.
The LARA team communicated in the Analysis Workshop4 in Munich July 2018, that
the DT concentration calculation was being corrected, specially improving the absolute
uncertainty associated with the DT concentration. As it is now, the relative uncertainty
is 0.97± 0.2 %, which does not meet the requirement of 0.1 % relative precision, but
again, the operating conditions of KATRIN in the First Tritium were not was LARA
was design to measure [KZa18]. It was also informed at that meeting that the absolute
uncertainty given for each DT measurement was overestimated, and a better estimate of
that uncertainty was being calculated.
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Figure 9.4 | DT molecular fraction stability. Top: DT molecular fraction (concentration) and
its absolute uncertainty provided by the LARA Team. The error bars are overestimated at this
stage. Bottom: Relative uncertainty of the DT concentration within one run.

4URL: https://indico.mpp.mpg.de/event/5918/
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9 First Tritium Analysis

9.4 First endpoint limits of the tritium β-decay spectrum

In this section I use the different analysis types in SAMAK (chapter 5) to constrain the
value of the tritium β-decay endpoint. The slow-control parameters for the model are
taken from the Run Summaries. In the case of the simple stacking, a weighted average
from the stacked runs is used, where each slow control parameter is weighted by the
measurement time of its respective run.

Furthermore, the squared neutrino mass value is not fitted because the sensitivity to
it given the First Tritium configuration is not relevant. It is fixed at a value of 0 eV in the
model.

The data sets for the unsegmented detector, ring, and single pixel segmentations were
fitted using Minuit [Jam94], the data set for the multipixel study was fitted with the
MATLAB® minimizer fminunc [MAT18].

9.4.1 DT expected endpoint estimate

Figure 9.5 | DT expected endpoint. Estimation of the expected endpoint DT for the ground
state of the daughter molecule. Figure from [Las18].

The endpoint fitted for any run or combination of runs for the First Tritium Campaign
is the endpoint for tritium as part of the DT (deuterium-tritium) molecule. As seen in
sec. 4.1, taking into account the recoil energy of the daughter nucleus Erec and assuming
that it is produced in the ground state (Vj = 0), the endpoint E0,gs of the tritium β-decay
spectrum is

E0,gs = Q− Erec. (9.1)

In the case of the DT molecule, Q, the energy released in the decay, is given by the
mass difference of the tritium and helium atoms, minus the electronic binding energy of
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9.4 First endpoint limits of the tritium β-decay spectrum

the mother-daughter pair

Q = ∆M(3He, T)− ∆Eb (9.2)

The binding energy, ∆Eb, can in turn be calculated by the use of the dissociation
energies (Ed) of DT and 3HeD+ and ionizing energies Ei of D,

∆Eb = Ed(DT)− Ed(
3HeD+) + Ei(D). (9.3)

The dissociation energy of 3HeD+ is still under investigation, and for now the value
for TT is taken: Ed(

3HeD+) = 1.897 eV [Las18]. Combining eqs. 9.1, 9.2, and 9.3, and
using the values from fig. 9.5, the endpoint value is calculated to be

E0,gs = 18573.7 eV. (9.4)

Furthermore, there is an unknown work function at the rear wall, estimated to be in
the hundreds of millivolts, and being independent for each pixel (See also 4.1). So the
effective endpoint fitted is

E f it(DT, W) = E0,gs(DT) + W. (9.5)

9.4.2 Comment on data
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Figure 9.6 | ROI correction factor for pixel 1.
The corrections amounts to a maximal difference
of 0.25 % in the measurement bin furthest from
the endpoint.

There was an issue with some of the pixels
during First Tritium. Many pixels from
the two rings closer to the edge of the
detector showed a very small number of
counts compared to the rest of the pixels.
For this reason, they were removed from
the analysis. More exactly, for the stacked
pixels and ring studies, the last two rings
are excluded; and for the pixel-wise anal-
yses, pixels 112 and 123-148 are excluded.

ROI Correction Factor

There is also a correction due to the region
of interest (ROI) cuts, that is dependent
on both retarding potential and pixel. The
function encoding this correction was pro-
vided by S. Enomoto. As can be seen in
fig. 9.6, the correction becomes more im-

portant as the retarding potential goes farther away from the endpoint, and it does not
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9 First Tritium Analysis

exceed 0.03 %. In SAMAK, to get the best estimate for the correction factor value at the
retarding potential of interest, an interpolation using cubic splines is done.

9.4.3 Weighted mean

Due to the nature of some studies, sometimes not one but several fitted values are given
as a result. Talking about the endpoint more specifically these studies have several fitted
endpoint values.

• Stacked pixels all runs: one endpoint per run

• Ring study stacked runs: one endpoint per ring

• Single pixel study, stacked runs: one endpoint per pixel.

In all cases described in the previous list, to summarize the fitted values in just one
value, I used a weighted average,

< E0 >=
n

∑
i=1

wiE0,i, (9.6)

where the subscript i represents each run, ring, or pixel, n the total number of
runs, rings, or pixels respectively, and the weights wi are the inverse squared if the
uncertainties σi of each fitted value

wi =
1
σ2

i
. (9.7)

The new uncertainty to this average can be shown to be

< σ >=
1√

∑n
i=1 wi

. (9.8)

9.4.4 Representative Endpoint for fit with systematics

Due to the correlation between the uncertainties from run to run or pixel to pixel, the
simple weighted mean presented in sec. 9.4.3 cannot be used. In its place, the following
procedure is applied.

We assume that the systematic uncertainties are fully correlated. One can then build a
covariance matrix with the fitted endpoints as

Mnn =


σ11 + s11 s12 s13 . . . s1n

s21 σ22 + s22 s23 . . . s2n

. . . . . . . . . . . . . . . . . . . . . .
sn1 xn2 sn3 . . . σnn + snn

 , (9.9)
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9.4 First endpoint limits of the tritium β-decay spectrum

where sxx =
√

σ2
x,total − σ2

x,stat and n is the total number of runs used in the analysis.
With this covariance matrix one can then perform a fit on the endpoint using the values
of each of the runs,

χ2 =
n

∑
ij
(E0,i− < E0 >)M−1

ij (E0,i− < E0 >), (9.10)

and minimize with respect to < E0 >. The < E0 > at which the minimum is found is
considered to be the representative E0 for the set of runs, and the uncertainty on < E0 >

of the fit is the correct uncertainty including correlations. In this process the systematic
uncertainties are considered to be fully correlated.

9.4.5 Effective endpoint fit summary table

Here are all the results condensed in a single table 9.4.

Table 9.4 | Effective endpoint fit summary. Results of the different kinds of analyses possible
in SAMAK for the tritium β-decay endpoint, of tritium embedded in DT.

Segm. (eV) Stat. χ2 Stat.+Sys. χ2

NO Runs Av.

Sh. 18573.7 ± 0.08 See fig. 9.8 18573.9 ± 0.63 See fig. 9.10
Med. 18573.44 ± 0.04 See fig. 9.8 18574.4 ± 0.56 See fig. 9.10
L. 18573.33 ± 0.02 See fig. 9.8 18574.8 ± 0.18 See fig. 9.10
Stacked Runs
Sh. 18573.8 ± 0.07 32.73/15 18573.8 ± 0.64 27.85/15
Med. 18573.44 ± 0.04 60.48/17 18574.5 ± 0.41 33.2/17
L. 18573.34 ± 0.02 102.99/23 18574 ± 0.3 36.67/23

Ring Stacked Runs

Sh. 18573.7 ± 0.07 See fig. 9.11 18573.9 ± 0.67 See fig. 9.12
Med. 18573.44 ± 0.04 See fig. 9.11 18575.3 ± 0.48 See fig. 9.12

Single Pix. Stacked Runs

Sh. 18573.7 ± 0.07 See fig. 9.13 18573.7 ± 0.66 See fig. 9.14
Med. 18573.13 ± 0.04 See fig. 9.13 18573.2 ± 0.75 See fig. 9.14

Multi Pix. Stacked Runs

Sh. 18573.8 ± 0.07 2149.94/1970 18573.7 ± 0.09 2104.34/1970
Med. 18573.14 ± 0.04 6707.9/2216 18573 ± 0.08 6555.07/2216

TOTAL 18573.4 ± 0.01
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9 First Tritium Analysis

9.4.6 Stacked Pixel Analysis (Uniform Mode)

As a short reminder, stacked pixel means that the counts from all pixels (in this case
excluding the last two rings) are summed and the detector is treated as if it were just
one pixel.
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Figure 9.7 | Effective E0 statistical uncertainties all runs. Value of the fitted endpoint minus
the weighted mean endpoint for all runs analyzed from the First Tritium Campaign, using only
statistical uncertainties.

Statistical uncertainty only First of all, the results of fitting the endpoint per run in
the three ranges are shown in fig. 9.7.

As expected, the uncertainty on the fitted value is smaller as the range analyzed
is larger. As the analyzed range increases the fitted endpoint strives away from the
expected value, starting in 18573.74 ± 0.043 eV for the short range, and ending in
18573.33± 0.024 eV for the long range. Also, the fitted values for the three ranges are
not the same within statistical uncertainties, which calls for the inclusion of systematics
in the analysis.

The distribution of the test statistic is shown in fig. 9.8. It is clear that the distribution
of the goodness of fit test parameter resembles a χ2 distribution, although not perfectly.
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Figure 9.8 | χ2 dist. statistical all runs. Distribution of the test statistic for the three ranges for
all runs, using only statistical uncertainties. Left: short range (up to -200 eV from E0). Middle:
Medium range (-400 eV from E0). Right: Long range (-1600 eV from E0).

In this case, even for the long range, the statistical uncertainty is large enough for the
minimizer to find a minimum close to the degrees of freedom of the fit.

Statistical and systematic uncertainty Performing the fit with the aid if the covariance
matrix leads immediately to a larger uncertainty of the fitted endpoints. Now the values
are less spread, and are the same within uncertainty. The fig. 9.9 shows again the
development of the endpoint depending on the run, this time with systematics. In the
short range, the main pattern is maintained because this range is dominated by statistics.

In fig. 9.10 it is visible that the distribution of the test statistic is slightly perturbed by
the inclusion of the covariance matrix in the short and medium ranges, but in the long
range, that distribution looks much closer to a χ2 distribution, when compared to the
case with statistics only. The weighted mean for the medium and especially long range,
are above most measurements due to the fully correlation of the systematic uncertainties.
This was done as a first approach, but it could be improved by adding the information
on the correlation coefficient between the systematic uncertainties, and separating the
uncertainty due to tritium activity fluctuations as it is uncorrelated.

Stacked runs

Statistical uncertainty only The fitted values for the case where all runs are stacked
follow the trend given by the mean endpoint values of the analysis of all the runs, as
well as the uncertainties. Actually, up to 0.01 eV precision, the uncertainties are the
same, meaning that the effect of stacking with this level of statistics does not affect the
results significantly. One can also see clearly, looking at the χ2 value, that the model
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Figure 9.9 | Effective E0 statistical and systematical uncertainties all runs. Value of the fitted
endpoint minus the weighted mean endpoint for all runs analyzed from the First Tritium
Campaign, using statistical and systematic uncertainties.
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Figure 9.10 | χ2 dist. statistical all runs. Distribution of the test statistic for the three ranges
for all runs, using statistical and systematic uncertainties. Left: short range (up to -200 eV from
E0). Middle: Medium range (-400 eV from E0). Right: Long range (-1600 eV from E0).
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9.4 First endpoint limits of the tritium β-decay spectrum

looks less and less like the data, within statistical uncertainty. This also confirms that
there are still effects that need to be understood at ranges further away than -200 eV.

Statistical and systematic uncertainty Although still not perfect, the minimizer finds
a χ2 value much closer to the degrees of freedom in the fit. One of the reason for
this is that the differences in qU due to the simple stacking are taken into account by
the systematic treatment. Nevertheless, seeing that the p-value of the long range fit
is p = 0.035, one might think of it as an indicator that there is still work to do in the
investigation of the systematics of First Tritium.

9.4.7 Stacked Ring Analysis

Statistical uncertainty only The first division of the segmentation brings no surprises
in terms of the values fitted, as it follows quite closely the trend presented so far, up to
the precision shown5. The long range was excluded because of the lack of knowledge
we have on the model, explained earlier.

The effect on averaging the electrostatic and magnetic field inhomogenities within
a ring has not yet been accounted for in a covariance matrix. Nevertheless, one can
already give some comments about it observing at the results. The spread of the
retarding potential among different runs does not exceed 300 meV. In the case of the
electrostatic potential inhomogenities, that spread among pixels is lower than 150 meV.
So this averaging of retarding potentials when stacking the pixels has an effect smaller
than the spread resulting from stacking the runs. The averaging of the magnetic field
inhomogenities apparently has an small impact, too. In fig. 9.11 one can see the fitted
values per ring and the χ2 distribution for the ranges analyzed.

There is no radial dependency on the endpoint value, as expected, but the pattern
is different for the short and medium ranges. This difference could be explained if the
extra data points taken into account in the medium range have more importance for the
fit, than the rest of the points.

Statistical and systematic uncertainty An important comment here is that there is
no dedicated covariance matrix for the ring analysis, so the covariance matrix for the
stacked pixels stacked runs was used, with the appropriate statistics for each ring.

By adding the systematic uncertainty in the fit, fig. 9.12. The test statistic distribution
in the medium range follows better a χ2 distribution than with only statistics. As in the
case of applying the “correlated” weighted mean to the fitted endpoint of the individual
runs, the full correlation of the systematical uncertainties shifts the weighted mean
endpoint to higher values, outside of the range of the individual endpoints per ring.

5Not shown in this work: if one takes more digits, they do become different.
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9 First Tritium Analysis

Figure 9.11 | Effective E0 statistics per ring. Top: fitted endpoint per ring short range (left) and
medium range (right), using only statistical uncertainties. Middle: test statistic distribution short
range (left) and medium range (right). Bottom: FPD view of the fitted values in each ring short
range (left) and medium range (right).

9.4.8 Single-pixel Analysis

Statistical uncertainty only A further segmentation of the detector again brings no
new information on the discussion to the fit values. Let us have a look at the FPD Viewer
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9.4 First endpoint limits of the tritium β-decay spectrum

Figure 9.12 | Effective E0 statistics + systematics per ring. Top: fitted endpoint per ring short
range (left) and medium range (right), using statistical and systematic uncertainties. Middle:
test statistic distribution short range (left) and medium range (right). Bottom: FPD view of the
fitted values in each ring short range (left) and medium range (right).

and χ2 distribution in fig. 9.13.

A remarkable feature is that the test statistic distribution does not follow a χ2 dis-
tribution for the degrees of freedom in the medium range, highlighting the need of a
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9 First Tritium Analysis

Figure 9.13 | Effective E0 statistics per pixel. Top: fitted endpoint per pixel short range (left)
and medium range (right), using only statistical uncertainties. Middle: test statistic distribution
short range (left) and medium range (right). Bottom: FPD view of the fitted values in each pixel
short range (left) and medium range (right).

better understanding of the data in ranges longer than -200 eV below the endpoint, and
improved stacking techniques. Some of the pixels in the FPD view maintain the same
relative value compared to the rest of the pixels (6, 50, 59, 95, and 116), but others do
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9.4 First endpoint limits of the tritium β-decay spectrum

change (62, 66, and 122). Nevertheless, no pattern can be distinguished in any of the
two cases.

It should be noted that the minimizer is dealing with very low statistics in the zone
close to the endpoint. The order of magnitude of counts from [−30, 40] eV from E0 is
102 per pixel, with an statistical uncertainty of ∼ 10. This leads to difficulties for the
minimizer to find the background precisely.

Statistical and systematic uncertainty Similarly to the ring analysis, there is no pixel-
wise covariance matrix. Again the covariance matrix from the stacked pixels stacked
runs was used, with the correct statistics for each pixel. In the future the plan is to
have a covariance matrix that one can use in each pixel individually, and that includes
correlations among pixels.

In this case, fig. 9.14, the covariance matrix did little to change the results. There are
more similarities in the FPD Viewer in both ranges, but the χ2 distributions remains
almost unchanged. It is possible that the systematic effects act differently on each pixel
individually, than in the detector as a whole. This calls for a more intensive look into
the systematics of the experiment, and for the elaboration of covariance matrices that
incorporate possible correlations among pixels.

9.4.9 Multi-pixel Analysis

Statistical uncertainty only Finally, the fit that incorporates all of the information in
the data, whose results are in table 9.4. The χ2 value for the short range is of course the
better of the two, but its p-value of 0.002 is rather low, indicating that the model does
not match well the data. The values fitted do not deviate from the trend of the other
analyses, and in this case, the added segmentation does not provide more precision, as
the uncertainty on the fitted parameters is the same.

This fit uses the same data as the single pixel fit, but in a different way. Therefore,
similar low statistics issues could arise in this study.

Building on the premise that the segmentation and the stacking are not the most
significant source of error, the values obtained from the fit are expected, as the same
quantity of statistics is analyzed in each case. What changes is just the granularity of the
segmentation of the detector, which can be translated in different response functions
for each pixel (or ring). The response functions in turn are only differentiated by the
inhomogenities if the magnetic and electrostatic fields.

Statistical and systematic uncertainty Once more, the covariance matrix from the
stacked pixel stacked runs was applied to each pixel. Adding the systematics decreases
the χ2 value slightly, but in this case the covariance matrix was not able to make the
fitted values be in the same range within uncertainties. This confirms the need of a
deeper understanding of the systematics pixel-wise, and again a dedicated covariance
matrix for the Single and Multi-pixel analyses.
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9 First Tritium Analysis

Figure 9.14 | Effective E0 statistics + systematics per pixel. Top: fitted endpoint per pixel short
range (left) and medium range (right), using statistical and systematic uncertainties. Middle:
test statistic distribution short range (left) and medium range (right). Bottom: FPD view of the
fitted values in each pixel short range (left) and medium range (right).

9.4.10 Summary Endpoint Fits

In fig. 9.15 is the plot with the information about the fits discussed in the previous
sections. The most relevant remarks is that the accounting of systematics is critical
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Pre
lim

ina
ry

Figure 9.15 | Effective endpoint summary. Effective endpoints fitted per analysis mode with
statistical and total uncertainties. The systematic uncertainties are fully correlated. (*) The labels
marked with (*) means that the p-value of the fit was smaller than 0.05, indicating that the model
does not match well the data, and therefore may not be reliable.

to analyze the data, specially going lower than -200 eV away from the endpoint. The
tools to analyze the spectrum were for years developed for a range that would not
exceed more than -100 eV from the endpoint, and therefore there is still work ongoing
in the understanding of the data in the medium and long ranges. In this respect,
the systematics treatment through the covariance matrix has proven to be a useful in
improving the fit and bringing realistic uncertainties on the fitted parameters.

The low statistics per pixel/per ring makes it necessary to stack the runs, and with
the simple stacking mechanism currently used in SAMAK, we incur in a mistake as the
data is not taken under the same slow-control conditions run after run. This is already
taken into account in the covariance matrix for the unsegmented FPD, but it still has to
be seen if there is a need of a dedicated covariance matrix for the stacking of the pixels
or rings. Also, there are better stacking mechanisms that minimize the mistake done
with the stacking.
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9 First Tritium Analysis

9.5 Column density handle

9.5.1 Column density scan

Since the E-gun for a precise measurement of the column density is not available yet, the
value of the column density has been investigated by other means, i.e. with the buffer
vessel pressure and the throughput of the WGTS loop system [Hei18]. Another method
available is treating the column density as a free fit parameter. The greatest challenge
of this new fit, is the computational time it would take to perform the minimization.
An average fit of the First Tritium Data with the MATLAB® minimizer needs tens of
thousands of function evaluations (using numerical derivatives), fitting just the neutrino
mass squared, endpoint, background and overall normalization. When the minimizer
explores new column density values, new response functions should be calculated
for each model, and due to the long range analyzed and fine binning of the response
function, this can be time consuming. So although possible, with the resources at hand
it was impractical to attempt to do so.

A workaround to the previously exposed problem is to “scan” over the column density,
which we call ρd scan in what follows. This is done by initializing the model with a
certain value of the column density and performing a fit. The values are discrete and
are chosen uniformly within a predefined range, normally between 50 % to 150 % of
the value given in the Run Summary, going in steps of 10 %. At each stage, all other fit
parameters are free to converge to any value.

A parabola around the minimum is then formed with the χ2 values at each column
density. But since the points are spread out, the minimum of this parabola is very
probably between two of the points. To obtain this minimum, we take the 4 points closer
to the point with the lowest value (inclusively, so 5 points in total), and fit a parabola
with the function polyfit [MAT18] from MATLAB®.

χ2 = a · (ρd)2 + b · (ρd) + c. (9.11)

After fitting the coefficents a, b, and c, we find the column density value where the
minimum χ2 is located,

CDmin = − b
2a

, (9.12)

and also that minimum χ2
min

χ2
min = y(CDmin). (9.13)

Using also the χ2 values, the asymmetric errors are computed by calculating the
intersection of a line, parallel to the horizontal axis at χ2

min + 1, with the parabola. The
column density value left to CDmin is the lower bound on the uncertainty, and the value
right of CDmin is the upper bound.
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9.5.2 Special set of runs at different column densities
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Figure 9.16 | ρd scan. ρd scan using 4 data sets of runs at 24 %, 48 %, 71 % and 100 % column
density, analyzed in the short range.

During the First Tritium, same runs were done at different column densities. For this
study, column densities are normally given in percentage, where 100 % corresponds to
the column density of run 40668, which is ρd(40668) = 4.4598× 1017 molecules/cm2.

• 11 runs at 24 % column density (40794 to 40804),

• 4 runs at 48 % column density (40763 to 40766)

• 10 runs at 71 % column density (40926 to 40935)

• 1 runs at 100 % column density (40668)

With this data set, a simultaneous ρd scan is performed, using four different sets of
ρd. The absolute value of the column density is poorly known, but the relative values
are known precisely by the estimation made with the buffer vessel pressure and the
throughput of the WGTS loop system [Hei18], and we use this information to better
constrain the absolute value of the ρd. A model is made such that it has the properties
of the stacked runs of each data set (four models in total).

The neutrino mass is not fitted and is maintained at 0 eV, the endpoint is common
for all data sets, but the normalization and background can be fitted independently. In
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9 First Tritium Analysis

total, 13 parameters are fitted: 1 endpoint, 4 normalizations and 4 background values
(flat over the energy range of interest).

The minimized function is then

χ2 =
4

∑
n=1

∑
t,q
(Ndata

n,q − Nmodel
n,q (X))Mn

t,q(Ndata
n,q − Nmodel

n,q (X))ᵀ) (9.14)

where the subscript n stands for each one of the datasets, and X is the vector with
the 13 fitted parameters. Mn

t,q contains both statistical and systematic uncertainties in
the integral spectrum, including bin to bin correlations. For the case of only statistical
uncertainties, the content of X is the counts of the electron events at each retarding
potential in the main diagonal.

At first we perform a fit using only the statistical uncertainties in the short range (up
to -200 eV from the endpoint).

9.5.3 Scanned Column Density

The result of such a fit is in fig. 9.16. The best value found with this manual search
is 5.62+0.59

−0.6 × 1017 molecules
cm2 , which is 126+13.2

−13.4 % from the value given in run 40668. This
means that the value in the Run Summary is underestimated. One should have in
mind the limitations of this value, where the fit was done without systematics and with
stacked runs and stacked pixels.

A similar study using the medium range, gives a CDmin value of 116+4.43
−5.8 %, and on

the long range CDmin = 104+3.9
−3.1 %. Even tough the value of the fitted column density

gets closer to the value proposed in the Run Summary, it is still outside of the range
given by the uncertainties of the scan, and it is always underestimated.

The scan was also done in the long range, and using the covariance matrix to account
for the systematics. The results are summarized in table 9.5. In all cases the same trend
is followed, the CDmin is lower as the range increases. In the case of the study with
statistical and systematic uncertainties, the results agree with each other. That is not
the case for the statistical only study. In all cases, according to the results, the column
density value given in the Run Summary was underestimated.

At the time of writing there is no way to assess if the Column Density values obtained
in this way are more correct than the ones estimated through the buffer vessel pressure
or throughput. However, this is one method to investigate the Column Density value by
using the spectrum itself.
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9.5 Column density handle

Table 9.5 | Column Density handle. Values of the column density where the minimum χ2 is
found, for the special data set described in the text.

ρd scan 100 % = 4.46× 1017 molecules
cm2

Stat. CDmin

Sh. 126+13.17
−13.36

Med. 116+4.43
−5.8

L. 104+3.91
−3.13

Stat.+Sys.

Sh. 135+26.24
−21.67

Med. 121+11.6
−12.9

L. 115+7.3
−7.2
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10 Conclusion

In this thesis, SAMAK, a new analysis software to analyze KATRIN data, was presented.
SAMAK is a MATLAB® based software which has a detailed model of the tritium
β-decay spectrum. It also includes, through the KATRIN response function, the effects
of the experimental settings of KATRIN. In addition, SAMAK can fit real data produced
by KATRIN, using Minuit [Jam94] or the MATLAB® minimizer fminunc [MAT18], both
gradient based. Systematic uncertainties are treated through the covariance matrix
approach in SAMAK.

The SAMAK code was validated by recovering the sensitivity of KATRIN for the
electron antineutrino mass for the 3-year measurement with the nominal settings from
the Design Report [Col05]. Afterwards, it was applied to calculate the sensitivity to
mν considering the most updated background experimental information from the First
Tritium Campaign. A flat measuring time distribution extended to -60 eV below the
endpoint was used to obtain a sensitivity of 0.3 eV for the neutrino mass, which could
be further improved by optimized scanning strategies.

SAMAK also participated in several data challenges, which are events designed to
compare and harmonize the results among different analysis tools. A deeper under-
standing of each of the analysis tools was gained by figuring out the differences among
the models used. Since the analysis codes are under constant development, having
periodic data challenges help minimize the possibility of having unnoticed mistakes in
the code.

A special framework in SAMAK was developed, dedicated to analyzing the data
coming from the First Tritium Campaign. That framework is prepared to read in the
KATRIN data in the form of HDF5 files, and analyze it using the different analysis
modes available for the First Tritium. The analysis modes are the possible combinations
of the segmentations of the Focal Plane Detector (uniform mode, ring, single pixel and
multipixel), the qU scan ranges (short -200 eV below E0, medium -400 eV below E0, long
-1600 eV below E0), and the stacking of the runs.

Using such framework the effective1 endpoint of the tritium β-decay spectrum was
analyzed, with the current status of the systematic uncertainties. A final value for the
physical endpoint cannot be given yet, most of the values in the different analysis mode
lie around the expected value of 18573.7 eV for DT [Las18].

One more study with the KATRIN First Tritium data was done to have a new handle
on the column density (density of the gas in the Windowless Gaseous Tritium Source of
KATRIN), since currently it is poorly known, with an uncertainty of 8 %. This study

1E0 + work function
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10 Conclusion

made use of a set of runs with different column density and of the fact that, although
the absolute value of the column density is not precisely known, the relative values
are known. The results of this study indicates that, if correct, the column density was
underestimated, and the correct absolute value, depending on the qU range considered
for the analysis, could be between 101 % and 160 % of the value given in the Run
Summaries.

The SAMAK software is under development, and new features and components are
added continuously. After finishing the First Tritium analysis, SAMAK will continue
giving valuable information to the KATRIN Collaboration in the 3-year measurement
phase and beyond.
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