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The development of a variety of nanoscale applications1,2

requires the fabrication and control of atomic3–5 or molecular
switches6,7 that can be reversibly operated by light8, a short-
range force9,10, electric current11,12 or other external stimuli13–15.
For such molecules to be used as electronic components, they
should be directly coupled to a metallic support and the switch-
ing unit should be easily connected to other molecular species
without suppressing switching performance. Here, we show
that a free-base tetraphenyl-porphyrin molecule, which is
anchored to a silver surface, can function as a molecular conduc-
tance switch. The saddle-shaped molecule has two hydrogen
atoms in its inner cavity that can be flipped between two
states with different local conductance levels using the electron
current through the tip of a scanning tunnelling microscope.
Moreover, by deliberately removing one of the hydrogens, a
four-level conductance switch can be created. The resulting
device, which could be controllably integrated into the
surrounding nanoscale environment, relies on the transfer of a
single proton and therefore contains the smallest possible
atomistic switching unit.

Porphyrins and related compounds are well established as mol-
ecular building blocks in surface-based nanoscale systems due to
their inherent functionality, which has been observed in both
biological and artificial systems16. The structural stability of many
of these species guarantees a straightforward sublimation in a
highly controlled ultrahigh-vacuum environment, and their
chemical variability allows the self-assembly of well-defined archi-
tectures such as molecular films17,18, porous networks19,20,
chains21, multideckers22 or metal–molecule contacts23.

The tetrapyrrole macrocycle can accommodate either a metal ion
or two hydrogens. It is well known that the two central protons of a
free-base porphyrin readily transfer between the two pairs of oppos-
ing nitrogens in the macrocycle (compare Fig. 1d and f) at ambient
temperatures, a process called tautomerization24,25. Recently, a
pioneering study introduced a bistable conductance switch based
on this mechanism, employing naphthalocyanine molecules on
thin insulating films12. The two- and four-level conductance
switches described in the following also make use of a tautomeriza-
tion reaction in individual molecules, but are directly anchored on a
metallic support.

To guarantee a stable readout and controlled operation, the mol-
ecular switches are studied by scanning tunnelling microscopy
(STM) at low temperatures, where the intrinsic proton transfer
dynamics is suppressed. STM offers unique opportunities to
operate individual switches on the atomic scale3–5. Not only can
the local atomic or molecular configurations be probed before and

after flipping the switch, but the operation process itself can be
followed by recording, for example, current traces as a function
of time26, and can even be modified27.

Figure 1 introduces the free-base tetraphenyl-porphyrin (2H-TPP)
molecule, with two hydrogen atoms in the inner cavity.
At low temperatures they are localized at opposing nitrogens, result-
ing in two possible trans-type configurations represented by a 908
rotation of the hydrogen pair. High-resolution STM images
(Fig. 1a) combined with near-edge X-ray absorption fine structure
spectroscopy (NEXAFS) data (Supplementary Fig. S1) demonstrate
that on adsorption on the Ag(111) surface, the 2H-TPP molecule
adapts to a saddle-shaped macrocycle geometry with pairs of oppo-
site pyrrole rings tilted upwards (a-pyr) or downwards (k-pyr)18,28,
respectively (Fig. 1b). This deformation is linked to rotated terminal
phenyl rings by steric repulsion (Fig.1, Supplementary Fig. S1).
Because of the resulting twofold symmetric macrocycle geometry,
the two positions of the hydrogen pair are not equivalent. The cor-
responding two configurations can be stably imaged and directly
discriminated in high-resolution STM topographs taken at low
bias voltages (Fig. 1c,e). In configuration Ha , the hydrogen pair is
aligned with the main axis of the molecule defined by the upward
bent a-pyr rings (Fig. 1c,d), while in configuration Hk , the hydro-
gen pair is positioned at the k-pyr units (Fig. 1e,f ). Applying a
tunnelling current at a voltage exceeding a given threshold can
result in a reversible switching between configurations Ha and Hk

that we attribute to an induced transfer of the proton pair. Other
origins cannot explain the observed transformations: a confor-
mational switching of the macrocycle would induce a rotation of
the terminal phenyl legs. However, high-resolution STM data, char-
acterizing the orientation of the phenyl groups, show no difference
related to the legs upon switching. Thus, a macrocycle adaptation is
ruled out. In addition, deprotonation experiments clearly
indicate that the positions of the inner hydrogens determine the
two configurations Ha and Hk. At low bias voltages, both
configurations can be imaged stably, guaranteeing a reliable
readout of the switch. Throughout this Letter, use of the wording
hydrogen atom or pair describes static configurations, whereas
dynamic processes are termed proton transfer.

The double proton transfer induced by applying a tunnelling
current can be monitored directly by recording the tunnelling
current I versus time t. To this end, the tip is positioned over one
of the a-pyr rings (Fig. 1c), the tunnelling parameters (I, U)
are set and the feedback loop is opened. The proton transfer can
be triggered at any position above the molecule; however, the rate
is generally lower on the k-pyr rings due to the twofold macrocycle
symmetry (Fig. 1g, Supplementary Fig. S2) and drops to zero on the
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bare metal next to the molecule. A typical I(t) trace is presented in
Fig. 1h and clearly reveals a switching between two well-defined
current levels. The high conductance state h represents
configuration Ha and the low conductance state l corresponds to
configuration Hk , as inferred from a comparison with the apparent

heights of both pyrrole moieties in the STM images. Thus,
2H-TPP/Ag(111) represents a bistable system. A detailed discussion
of the switching rate and the underlying mechanism follows;
however, it needs to be emphasized that we detected, at most,
two current levels in all data on 2H-TPP, covering switching rates
up to 0.5 kHz. Even after ordering 2H-TPP molecules in highly
regular square arrays on Ag(111), the switching operation is
demonstrated (Supplementary Fig. S3).

To upgrade this bistable system to a four-level conductance
switch, we applied an atomically controlled deprotonation pro-
cedure in which the STM tip was centred above the 2H-TPP macro-
cycle and a voltage pulse of typically 2 V was applied, resulting in
the removal of one of the inner protons. This single deprotonation
process, yielding a 1H-TPP species, can be directly monitored in I(t)
traces (shown in Fig. 2g). Furthermore, a complete deprotonation of
the macrocycle pocket can be achieved by a second step29 using a
voltage pulse of typically 2.2 V. STM images representing all three
species, that is, 2H-TPP, 1H-TPP and 0H-TPP, are shown in
Fig. 2a–c together with corresponding schematic models (Fig. 2d–f).
All these deprotonation events are irreversible. The deprotonated
0H-TPP is of no further interest, as complete macrocycle deproto-
nation prevents any proton-related switching events, as confirmed
experimentally. In contrast, the singly deprotonated 1H-TPP offers
the possibility that the remaining hydrogen can be localized at
each of the four nitrogen positions in the porphyrin pocket.

Figure 3 presents all four configurations for the 1H-TPP
molecule: Ha1, Hk1, Hk2 and Ha2. As in the 2H-TPP case, low-
voltage imaging allows us to read out the position of the hydrogen,
while higher voltages induce switching, which can be tracked by
means of I(t) spectra. The trace in Fig. 2g indicates that a switching
can be observed even after the first deprotonation. On positioning
the STM tip in a slightly asymmetric position above a pyrrole
ring, up to four different current levels can be discriminated
(Fig. 3i, Supplementary Fig. S5). In analogy to the 2H-TPP case,
we relate these four conductance states to the position of the
hydrogen in the porphyrin pocket (Fig. 3e–h). We observe the
highest conductance if the hydrogen is located at the k-pyr where
the tip is positioned. The two subjacent levels represent the
positions on the two neighbouring a-pyr rings and the lowest
conduction level represents the opposing k-pyr location, respect-
ively, as confirmed experimentally. It should be noted that a suitable
positioning of the tip is crucial to detect all four current levels. In the
case where a sharp tip would be perfectly centred above the macro-
cycle, only two current levels, representing the inequivalent pyrroles
a-pyr and k-pyr, could be distinguished due to symmetry reasons.

The limited time resolution in the spectrum in Fig. 3i implies that
the proton can not only be exchanged between neighbouring nitro-
gens, but can also be directly transferred to the opposing nitrogen,
as indicated for example by the transition from the highest to the
lowest conductance level observed at a time of 2.2 s. However, a
careful analysis reveals that the transitions typically proceed
through the intermediate levels. These experiments clearly
indicate that the hydrogen position can be directly identified in
constant-current STM images. Also, a readout of a given current
value unambiguously determines the configuration. However, it
should be noticed that the observed protrusions do not represent
the hydrogen itself, but rather the electronic effect reflecting its
presence at the pyrrole rings of the porphyrin macrocycle.
Applying a single switching event, the proton cannot be deliberately
transferred to one specific position. However, this does not hamper
the function of the switch, as the current levels that are recorded
during operation of the switch are characteristic for the proton
position and a feedback mechanism might be used to freeze the
desired state. In addition, there is some control over the switching
direction. The residence time in the highest current state is shortest,
as clearly seen, for example, in Supplementary Fig. S5b. Thus we
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Figure 1 | Double proton transfer in 2H-TPP on Ag(111). a, Pseudo three-

dimensional rendering of a high-resolution STM image of 2H-TPP adsorbed

on Ag(111). b, Corresponding model consistent with the NEXAFS data

(cf. Supplementary Fig. S1) highlights the saddle-shaped deformation

resulting in two inequivalent pairs of pyrrole rings (a-pyr, marked in orange,

and k-pyr) c, STM image of configuration Ha (I¼0.1 nA, U¼20.2 V).

d, Model highlighting the saddle-shaped deformation and the position of the

hydrogen pair in configuration Ha. e, STM image of configuration Hk

(I¼0.1 nA, U¼20.2 V). f, Model of configuration Hk. g, Spatial dependence

of the switching rate displayed with colour-coded dots (recorded at 21.6 V

and 2 nA). The highest rates (yellow markers) are observed above the a-pyr.

h, Current versus time trace recorded at 21.9 V at the position indicated in c.

A switching between two current levels representing the high (h) and low

(l) conductance states is clearly discernible.
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deal with a configuration where the proton residence time on the
pyrrole close to the tip position is lower than on the other positions.

To clarify the proton transfer mechanism, tens of thousands of
switching events at different sample bias voltages U and tunnelling
currents I were evaluated for both the 2H-TPP and 1H-TPP cases.
The analysis is summarized in Fig. 4 (current dependence) and
Fig. 5 (voltage dependence). These plots rely on data recorded
with the STM tip close to an a-pyr position.

The linear current dependence of switching rate S (Fig. 4) points
to a one-electron process driving the proton transfer in 2H-TPP and
1H-TPP. This finding is corroborated by an analysis of the switching
times presented in Supplementary Fig. S4. In combination with
the voltage-dependent data presented below, we thus exclude the
electric field between tip and molecule as the dominating trigger
for the tautomerization process. Nevertheless, as shown in
Supplementary Fig. S6, the absolute switching rate depends on
the termination of the STM tip and thus on the current density.
A direct comparison of the switching rates between 2H-TPP and
1H-TPP was therefore performed with the same tip on the very
same molecule before and after deprotonation. The linear fits in
Fig. 4b reveal that the switching rates for 1H-TPP (S1H-TPP; see
Supplementary Information for a discussion of the data analysis,
Supplementary Fig. S7) and 2H-TPP (S2H-TPP) are similar.
However, the ratio S1H-TPP/S2H-TPP¼ 1+0.4 varies from molecule
to molecule. This scatter might originate in minute modifications
of the tip or subtle differences in the adsorption configuration

during the deprotonation procedure and is beyond control in our
experiments. However, importantly, the rate for 1H-TPP corre-
sponds approximately to the rate for 2H-TPP at any given current
value. Accordingly, in both cases a similar number of electrons
are needed for one switching event, which points to an analogous
process for switching in both species.

Regarding the voltage dependence summarized in Fig. 5, for bias
voltages below +0.5 V no switching events could be detected,
confirming the stable readout by STM images at low bias. Above
this threshold, the switching rate S increases by several orders of
magnitude within 1 V for both 2H-TPP and 1H-TPP. In a small
voltage range between +1 and +1.5 V the increase is nearly expo-
nential and levels off at higher voltages12. Figure 5a includes
voltage-dependent data recorded at three constant current values
(0.5, 2 and 4 nA, normalized to a rate of 1 at 21.5 V) that show
identical behaviour. The very similar rates for positive and negative
sample bias voltages, resulting in curves symmetric to the Fermi
level (Fig. 5a), exclude an exclusive role of one specific molecular
orbital in the proton transfer. Indeed, tunnelling spectra recorded
above an a-pyr show a highly asymmetric local electronic density
of states around the Fermi level (Fig. 5b). This is of importance,
as recent theoretical models addressing surface-anchored switches
based on tautomerization solely consider an electron transfer via
the lowest unoccupied molecular orbital (LUMO)30,31. The fact of
the voltage threshold and symmetry agreeing for both polarities
rather points to an excitation of the proton transfer by electrons
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Figure 2 | Sequential deprotonation of 2H-TPP on Ag(111). a, STM image of 2H-TPP (I¼0.2 nA, U¼20.2 V). b, STM image of 1H-TPP. c, STM image of

0-TPP. d–f, Tentative models illustrating the 2H-TPP, singly deprotonated 1H-TPP and fully deprotonated 0H-TPP species. g, I(t) trace recorded at the centre

of 2H-TPP at 1.9 V. The sudden decrease in current represents the single deprotonation to 1H-TPP.
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tunnelling inelastically through the porphyrin. Indeed, it is generally
agreed that the proton transfer in free-base porphyrins involves
both vibrational excitations in the macrocycle that temporarily
reduce the separation of the hydrogen from an adjacent nitrogen

site, and proton tunnelling. The corresponding barrier heights,
determined by theoretical and experimental studies, range
from 0.5 to 0.6 eV (refs 29,31–33) and thus coincide with the
onset voltage observed in our experiments. Overall, the peculiar
voltage dependence of the switching rate calls for thorough
theoretical studies.

Adjusting I and U, S can be tuned easily from 0 to
�500 Hz, reaching quantum yields (events per electron) of
�7 × 1027 (Supplementary Fig. S8). The limitations in switching
frequency are given by both the voltage threshold for deprotona-
tion and lateral displacements of the molecule induced at
high currents.

The obvious similarity between 2H-TPP and 1H-TPP in both the
current and voltage dependence suggests that the same process is
involved in the switching. This is in full agreement with most
current studies, which agree that the double proton migration
in liquid and solid states proceeds in a stepwise, asynchronous
manner involving an intermediate state32,34,35. The scheme in
Fig. 5c sketches this reaction pathway. Instead of an immediate,
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Figure 3 | Visualization of the four proton positions in 1H-TPP on Ag(111).

a–h, STM images (a–d) of the same 1H-TPP molecule in four configurations

representing the hydrogen positions schematically shown in corresponding

models e–h (I¼0.2 nA, U¼20.2 V). i, Current trace recorded in a slightly

asymmetric position on a k-pyr position (marked by the dot in a). The four

conductance levels are clearly discernible (I¼0.4 nA, U¼21.6 V).
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current I, pointing to a one-electron process driving proton transfer. Every
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rates for 2H-TPP vary from molecule to molecule. The green and red lines

show the corresponding rates for the same molecules measured with an
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synchronous migration of both protons, they are transferred one by
one. The intermediate state is characterized by a cis-type
configuration where the two hydrogens occupy neighbouring
nitrogen sites. Judging from the literature, the cis-state has a very
short lifetime32,35 and relaxes either back to the initial state or to
the final rotated configuration (Fig. 5c). Hence, the cis-state
decays immediately on the timescale of a typical STM experiment
and is not detectable. Accordingly, from a practical point of view,
the 2H-TPP/Ag(111) indeed constitutes a two-level conductance
switch and recent theoretical suggestions claiming four conductance

levels detectable by STM in a related system seem rather optimis-
tic31. Assuming that the switching process is triggered by a direct
excitation of hydrogens by tunnelling electrons, the observed
similarities between 2H-TPP and 1H-TPP indicate that in both
cases one proton is transferred to an adjacent nitrogen site for
each excitation. This interpretation substantiates the idea that
for a metal surface-anchored porphyrin too, the tautomerization
reaction proceeds in an asynchronous way. If, on the other hand,
the switching originates in a deformation of the macrocycle
induced by tunnelling electrons and the resulting proton transfer
is not the rate-limiting process, an immediate or asynchronous
motion cannot be discriminated.

In summary, we have developed a novel metal-anchored
four-level conductance switch based on prototropy. Specifically,
an individual proton is reversibly transferred in the macrocycle
of a singly deprotonated 1H-TPP molecule. Thus, we have provided
a demonstration of the smallest possible atomistic switching unit.
The direct comparison to 2H-TPP/Ag(111) (representing a bistable
system with two well-defined conductance levels) allows us to gain
insight into the proton transfer mechanism on which the switches
are based. The data point to a one-electron-induced excitation as
a trigger for proton migration in both species and suggest an iden-
tical switching process in both 1H-TPP and 2H-TPP. As the periph-
ery of the molecule is not affected by the proton migration in the
inner pocket, the switch is integrable into nanoscale architectures.
During the operation of the switch, the STM tip is stationary and
only plays the role of the second electrode. Consequently, just an
appropriate electrode, and no complete STM set-up, is needed for
the switching action. All the above features reveal the promise of
the free-base TPP species presented here for future nanoscale appli-
cations, especially as our findings might be easily extended to the
huge class of other free-base porphyrins as well as related
macrocyclic compounds.

Methods
All experiments were performed in a custom-designed ultrahigh-vacuum chamber
housing a commercial STM operated at 6 K (www.lt-stm.com). The base pressure
during the experiments was below 2 × 10210 mbar. Repeated cycles of Arþ

sputtering and annealing to 725 K were used to prepare the Ag(111) single crystal.
Subsequently, 2H-TPP molecules (Sigma Aldrich, purity ≥99%) were dosed from a
thoroughly degassed quartz crucible held at 600 K. During deposition the sample
temperature was kept at room temperature to grow 2H-TPP arrays or at 150 K to
obtain individual 2H-TPP molecules. All STM images were recorded in constant-
current mode using an electrochemically etched tungsten tip prepared by sputtering
and controlled dipping into the Ag(111) substrate. In the figure captions U refers to
the bias voltage applied to the sample. The WsXM program (www.nanotec.es) was
used to display the STM images. Current traces I(t) were recorded at constant height
(open feedback loop) after setting the desired parameters (I, U ).
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