System	Em [meV]	Ed [meV]	D ₀ [cm ² /s]	θ	T [K]	D T [cm ² /s]	T t [K]	Method	Ref.	E _b [eV]	Ref.
¹ H/W(110)		177 ± 4	1.7×10^{-7}	0.1	150 - 180	2×10^{-13}	160	FEM	[1]	3.0	[2]
² H/W(110)		170 ± 9	3.5×10^{-5}	0.1	100 - 130	9×10^{-14}	70	FEM	[1]		
³ H/W(110)		208 ± 9	3.3×10^{-3}	0.1	110 - 120	5×10^{-14}	70	FEM	[1]		
¹ H/Ru(0001)		170 ± 20	6.3×10^{-4}	0.3	260 - 300	_		LITD	[3, 4]	2.9	[5]
² H/Ru(0001)		180 ± 20	4.6×10^{-4}	0.3	260 - 300	_		LITD	[3]		
¹ H/Rh(111)		160	1×10^{-3}	0.33	150 - 250	_		LITD	[6]	2.7	[7]
		140 ± 20	6.5×10^{-3}	0.3	160 - 210	_		LITD	[8]		
² H/Rh(111)		190 ± 20	8×10^{-4}	0.33	180 - 280	-		LITD	[6]		
		140 ± 20	5.7×10^{-4}	0.4	180 - 220	-		LITD	[8]		
¹ H/Ni(001)		170 ± 20	4.5×10^{-3}	0.1	220 - 280	-		LITD	[9]	2.7	[10]
		150	$2.5 \pm 1 \times 10^{-3}$	1	210 - 260	-		LITD	[11]		
		140	1×10^{-5}	0.25	100 - 130	1×10^{-12}	100	FEM	[12]		
		150	1×10^{-6}	0.7	160 - 200	-	160 ª	LOD	[13, 14]		
² H/Ni(001)		190 ± 20	$8.5 \pm 2 \times 10^{-3}$	1	210 - 260	-		LITD	[11, 15]		
		160	2×10^{-5}	0.15	100 - 130	1×10^{-12}	100	FEM	[12]		
		220	5×10^{-5}	0.7	170 - 200	-	170 ^a	LOD	[13, 14]		
¹ H/Ni(111)		130 ± 10	$4 \times 10^{-4 \pm 1.5}$	0.08	100 - 120	2×10^{-10}	100	FEM	[12]	2.7	[10]
		196	2.8×10^{-3}	0.3	110 - 220	—	110 ^a	LOD	[16]		
² H/Ni(111)		140 ± 10	$5 \times 10^{-4 \pm 1.5}$	0.05	110 - 120	1×10^{-10}	100	FEM	[12]		
		218	3.4×10^{-3}	0.3	80 - 150	6×10^{-12}	≈ 100 ª	LOD	[16]		
¹ H/Pt(111)		300 ± 40	1.0	0.24	210 - 250	-		LITD	[17]	2.5	[18]
	68 ± 5		$1.1\pm0.5 \times 10^{-3}$	0.1	140 - 250	-		QHAS	[19]		
² H/Pt(111)	76 ± 7	300 ± 40	0.5 1.4±0.6 × 10 ⁻³	0.24 0.1	190 - 260 140 - 250			LITD QHAS	[17] [19]		

Hydrogen diffusion on metals

^a assuming additive classical hopping and activated tunneling diffusion fitted by an Arrhenius law with activation energies and prefactors for

Ni(001) : 50 meV (H, D) and 1.5×10^{-9} (H), 9×10^{-10} cm²s⁻¹(D) [13],

Ni(111) : 105 meV (H, D) and 2.4×10^{-7} (H), 1.6×10^{-8} cm²s⁻¹(D) [16].

 $\boldsymbol{\theta}$ is given in terms of the saturation coverage; D_{T} : tunneling diffusion constant;

Tt: transition temperature between high- and low-temperature regime.

References

[1] S. C. Wang and R. Gomer, J. Chem. Phys. 83, 4193 (1985). [2] P. W. Tamm and L. D. Schmidt, J. Chem. Phys. 54, 4775 (1971). [3] C. H. Mak, J. L. Brand, B. G. Koehler and S. M. George, Surf. Sci. 188, 312 (1987). [4] C. H. Mak, J. L. Brand, A. A. Deckert and S. M. George, J. Chem. Phys. 85, 1676 (1986). [5] P. Feulner and D. Menzel, Surf. Sci. 154, 465 (1985). [6] E. G. Seebauer, A. C. F. Kong and L. D. Schmidt, J. Chem. Phys. 88, 6597 (1988). [7] T. W. Root, L. D. Schmidt and G. B. Fisher, Surf. Sci. 150, 173 (1985). [8] S. S. Mann, T. Seto, C. J. Barnes and D. A. King, Surf. Sci. 261, 155 (1992). [9] S. M. George, A. M. deSantolo and R. B. Hall, Surf. Sci. 159, L425 (1985). [10] K. Christmann, O. Schober, G. Ertl and M. Neumann, J. Chem. Phys. 60, 4528 (1974). [11] D. R. Mullins, B. Roop, S. A. Costello and J. M. White, Surf. Sci. 186, 67 (1987). [12] T. S. Lin and R. Gomer, Surf. Sci. 255, 41 (1991). [13] A. Lee, X. D. Zhu, L. Deng and U. Linke, Phys. Rev. B 46, 15472 (1992). [14] X. D. Zhu, A. Lee, A. Wong and U. Linke, Phys. Rev. Lett. 68, 1862 (1992). [15] D. R. Mullins, B. Roop and J. M. White, Chem. Phys. Lett. 129, 511 (1986). [16] G. X. Gao, E. Nabighian and X. D. Zhu, Phys. Rev. Lett. 79, 3696 (1997). [17] E. G. Seebauer and L. D. Schmidt, Chem. Phys. Lett. 123, 129 (1986). [18] K. Christmann, G. Ertl and T. Pignet, Surf. Sci. 54, 365 (1976). [19] A. P. Graham, A. Menzel and J. P. Toennies, J. Chem. Phys. 111, 1676 (1999).