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“All models are wrong, but some are useful.”
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CHAPTER 1

Introduction

Especially in astronomy processing of large data sets has always been part of a physi-
cist work. Ever since the forecast of the return of Halley’s Comet in the 18th century
computation based on large amount of data have been distributed on a dedicated
group of workers, which were referred to as computers [Grier, 2013]. Even in the
Apollo Missions in the middle of the 20th century with the uprising of electronics
human computers were still employed to support them [Greicius, 2016]. Only in the
late 20th century electronics became powerful enough to take over their work and
ultimately their name.

While it might appear odd to choose a seemingly informatics based theme for a
bachelor thesis in physics, it is actually a métier of physics older than informatics
itself. In fact machine learning and especially nowadays popular deep learning are
a fundamental part of a physicist repertoire. The Large Hadron Collider (LHC) at Cern
in Genf for example produces too much data for a human to handle making the
usage of artificial intelligences crucial [Guest, Cranmer, and Whiteson, 2018].

The central theme of this thesis are blazars, a subcategory of the Active Galactic Nu-
clei (AGN) zoo. It shows some of the most extreme features known in the universe
such as a supermassive black hole, relativistic jets radiating well into γ-ray regions
and superluminal velocities. Although they have been subject to many studies they
are still not completely understood [Perlman, 2013]. With the uprising of machine
learning and especially deep learning only recently have their methods been applied
to blazars (e.g. [Fraga et al., 2020], [Kovačević et al., 2020]). However to our knowl-
edge, while there have been classification models trained, there are no models to
predict the actual synchrotron peak νpeak from the Spectral Energy Distribution (SED),
which is the indicator the classification is based on.

The goal of this thesis is to apply machine learning methods to predict the syn-
chrotron peak νpeak with a prediction interval using the Spectral Energy Distribution
(SED) of blazars. Because a best model or approach cannot be deduced beforehand
and there are no other models to compare to, multiple models as well as different
ways of data preprocessing are compared. The used algorithms consist not only of
the popular deep learning but also the more traditional ones random forest and gradi-
ent boosting to see if the increase in complexity and thus labour actually results in an
increased performance.

Chapter 2 introduces AGN including the unified model with an emphasis on blazars
and concludes with numerical models to simulate the SED of a blazar.
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Chapter 3 gives an overview of the used machine learning algorithms. While it was
tried to keep a balance between too shallow and too detailed explanations, since
this is still a physics thesis, it is not strictly necessary to have read this chapter to
understand the results but it is recommended nevertheless. Since it requires no prior
knowledge it should provide an easy entry to this field. The chapter dedicates one
section per algorithm. Once can therefore also return to this chapter after examining
the results and only read the sections one is interested in.

Chapter 4 presents the data set used in this thesis, explains and justify the data pre-
processing including data augmentation that was done on it, followed by showing
different types of feature sets used to train the models later on, consisting of binning,
compressed sensing and an autoencoder.

Chapter 5 shows and evaluates the trained models using histogram of their predic-
tions and plots of prediction intervals. There was one model per feature set and
algorithm trained thus in total 9 models. It ends with a comparative summary of the
models using various metrics.

Chapter 6 presents BlaSE, a ready to use tool for predicting the synchrotron peak of
blazars including a 95% prediction interval based on the results of this work. The
new tool is then applied to the 4LAC-DR2 catalogue.

Chapter 7 ends the thesis not only with a conclusion and an outlook, but also with
some suggestions for future works on this topic.



CHAPTER 2

Blazars

Blazars are among the most extreme objects in the universe being powered by super-
massive black holes [Padovani et al., 2017] and are the central theme of this thesis.
They show interesting properties making them even candidates for neutrino and
comsic-ray sources needed in the developing research area of multimessenger as-
tronomy [Petropoulou et al., 2020].

This chapter first introduces the blazar as a specimen of the AGN zoo on the basis of
the unified model, followed by numerical methods to model their emission behavior
as described by their Spectral Energy Distribution (SED).

2.1 Blazars as a Subclass of AGN

Already in 1907 has E. A. Fath documented his observation of the spiral nebula NGC
1068 which stood out from all other nebulas he has observed by showing not the ex-
pected star like absorption lines but dominant emission lines typical for planetary
nebula [Perlman, 2013] and is today even considered to be a candidate for a neutrino
source as indicated by the data of the IceCube experiment [IceCube Collaboration et
al., 2019]. Discoveries of similar objects followed, whose properties were system-
atized by Seyfert in 1943 and are thus now known as Seyfert galaxies. Most of their
radiation is produced by their nuclei and shows exceptionally broad emission lines.
This led to the hypothesis, that there is a distinct class of galaxies, which is now
known as Active Galactic Nuclei (AGN).

The class of AGN holds a variety of different objects, thus often the term of an AGN
zoo is used. However, they all share intrinsic properties such as the earlier men-
tioned broad emission lines and the high luminosity from the nuclei, which actually
appears superluminal due to relativistic effects, but also a high variability and a con-
tinuos radiation starting from the infrared up to in some cases even γ-rays [Perlman,
2013]. The Existence of these similarities despite their various subtypes led to the de-
velopment of the unified model by Urry and Padovani, 1995, which is illustrated in
figure 2.1.

It is nowadays widely accepted, that AGN are driven by a still growing supermas-
sive black hole (& 106M�) in the center of the galaxy, which is fed by an accretion
disk. This explains the high luminosity and variability as it allows up to half the
gravitational energy to be converted into radiation and heat. The disk is surrounded
by an optical thick "torus", which explains the behavior of many AGN in the infrared
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Figure 2.1: Illustration of AGN as described by the unified model featuring both
jetted and non-jetted version. At different viewing angles are further subclasses
marked. Kindly provided by Theo Glauch.

[Padovani et al., 2017]. While the form of a torus is a valid assumption, it is by no
mean necessary and the name is historically based. In fact, newer data suggests that
a patchy structure is more likely. The nucleus is further enveloped by warm gas,
which explains the emission lines features. Only around 10-20% of all AGN also
posses a highly relativistic jet, dividing the zoo into jetted and non-jetted AGN, often
also referred to as radio loud and radio quiet. Further subdivision are highly depen-
dent on the viewing angle [Perlman, 2013].

An especially interesting although rather rare subclass are jetted AGN with a small
viewing angle (. 15− 20◦) and thus pointing the jet towards us known as blazars
[Padovani et al., 2017]. The jet’s output is strong and therefore dominates the radi-
ation making the emission lines practically invisible. The radiation goes well into
γ-ray frequencies, were many blazars deposit most of their radiation energy and
were in fact for the longest time the only known extragalactic source of radiation in
the GeV and even TeV region. Figure 2.2 shows an Spectral Energy Distribution (SED)
of the blazar PKS 2155-304 as an example, featuring the broad emission spectrum
and the especially in X-ray present high variability. It also shows the characteristic
double bump. Figure 2.3 shows a model representation of an imaginary blazar to
make the bumps more obvious. The first bump is produced by synchrotron radia-
tion caused by relativistic electrons in the jet, while the second is mainly caused by
inverse compton scattering, i.e. the photon gaining energy from free electrons. The
necessary seed photons can originate from various sources such as the synchrotron
radiation, thermal radiation from the surrounding gas or even the cosmic microwave
background [Perlman, 2013]. Another possible explanation for the second bump are
hadronic processes like pion decay [Padovani et al., 2017].
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Figure 2.2: SED of the blazar PKS 2155-304 using data generated by the VOUBlazar
tool. It shows strong radiation over a broad frequency range up to several hundred
GeV with especially high variability in the X-ray region.

Figure 2.3: Modeled SED of a blazar. It shows the intrinsic two bumps produced by
synchrotron and inverse compton radiation. Adapted from Zabalza, 2015

.
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Category Frequency range
Low-energy cutoff blazar (LSP) νpeak ≤ 1014Hz
Intermediate-energy cutoff blazar (ISP) 1014Hz ≤ νpeak ≤ 1015Hz
High-energy cutoff blazar (HSP) νpeak ≥ 1015Hz

Table 2.1: Classification of blazars based on their synchrotron peak νpeak (Padovani
et al., 2017).

The peak of the first bump, i.e. of the synchrotron radiation νpeak is commonly used
to further subdivide blazars into three categories as listed in table 2.1.

2.2 Numerical Models

The numerical modeling of blazars are a tedious and complex problem resulting in
models being hand-tailored for specific objects (e.g. Petropoulou et al., 2020, Cerruti
et al., 2018). The process is further complicated by the fact that blazars and even
AGN in general are not completely understood, yet [Padovani et al., 2017]. However,
since here the models won’t be used to fit existing objects, but rather to simulate
non-existing blazar-like objects, more simple models are already sufficient. Here the
python package naima was used, whose models will be briefly introduced in the
following [Zabalza, 2015].

As mentioned in the previous section, the black hole is surrounded by layers of gas,
which is needed for not only the synchrotron radiation, but also the inverse comp-
ton scattering. Therefore, one must model the corresponding particle distribution
for which naima provides several empirical functions mapping particle energy to its
density. The following lists the distribution functions provided by naima each having
additional empirical parameters and containing its predecessor as special case.

• Power Law

f (E) = A
(

E
E0

)−α

(2.1)

• Log Parabola

f (E) = A
(

E
E0

)−α−β log
(

E
E0

)
(2.2)

• Exponential Cutoff Power Law

f (E) = A
(

E
E0

)−α

exp

[
−
(

E
Ecuto f f

)β
]

(2.3)

• Exponential Cutoff Broken Power Law

f (E) = exp

[
−
(

E
Ecuto f f

)β
]A

(
E
E0

)−α1
: E < Ebreak

A
(

Ebreak
E0

)α2−α1
(

E
E0

)−α2
: E > Ebreak

(2.4)

Naima obviously also includes radiation models taking the particle distribution and
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Name Temperature Energy Density
Cosmic Microwave Background 2.72 K 0.261 eV cm−3

Near Infrared 30 K 0.5 eV cm−3

Far Infrared 3000 K 1 eV cm−3

Table 2.2: Default photon sources as provided by naima [Zabalza, 2015]

Property Value
Exponential Cutoff Power Law
A 1× 1036 eV−1

E0 1× 1012 eV
α 2.1
Ebreak 1.3× 1013 eV
β 1.0

Property Value
Synchrotron
B 1× 10−8 T
Inverse Compton
Sources CMB, NIR, FIR
SED
Distance 1.5 kpc

Table 2.3: Properties of example blazar in figure 2.3

additional parameters to produce the corresponding components of the SED. There
are in total four radiation models provided, however only the synchrotron radiation
and inverse compton are of interest here. The synchrotron model is parameterized
by the isotropic magnetic strength, the inverse compton model by a list the photon
sources. The photon source can either be specified as thermal radiation of specific
temperature or monochromatic radiation of specific energy alongside the sources
energy density. There are three default values for the photon source as listed in table
2.2. Both models additionally allow to specify the minimum and maximum electron
energy as well as the blazar’s distance. An example of an model produced by using
naima is shown in figure 2.3 using parameters as described in table 2.3.





CHAPTER 3

Machine Learning

The origins of machine learning can be dated back to October 1950 when Alan Tur-
ing brought up the question wether machines can think [Turing, 1950]. Already 8
years later Rosenblatt tried to mimic the human brain by creating a neural network
using perceptron as building blocks [Rosenblatt, 1958]. Machine learning has always
been an active field of study, but only recently since computers became powerful
enough has the research gained momentum. One of the better known breakthroughs
are IBM’s Deep Blue, beating world chess champion Garry Kasparov in 1997 [Hard-
ing and Barden, 2011] and Google’s AlphaGo beating Go master Lee Se-dol in 2016
[Borowiec, 2016].

Nowadays machine learning is often referenced by the buzzwords Big Data and Ar-
tificial Intelligence and especially the younger generations interact with it on a daily
basis. According to Dimensions in 2020 over a quarter a million publications were
made in the field of Artificial Intelligence and Image Processing [Digital Science, n.d.].
In the recent years a lot of books about the topic of machine learning have been pub-
lished: Hastie, Tibshirani, and Friedman, 2009; Bishop, 2016; Goodfellow, Bengio,
and Courville, 2016; Du and S., 2019; Brunton and Kutz, 2019; Berk, 2020.

This chapter is based on these books and starts with a brief introduction to the gen-
eral concept of machine learning, followed by explaining the algorithms used in this
thesis.

3.1 Basic Concepts

At the heart of any machine learning algorithms is data. Mathematically speaking
can the data be seen as a tensor, with either fixed or variable dimension. The latter
is often referenced as sequential data. A grayscale picture for example is also data
usually stored as a matrix consisting of pixel, where 0.0 means black and 1.0 white.
A video adds time as a third dimension. If its duration is not fixed it can also be
seen as sequential data. For now we will focus on one dimensional data. Obviously,
a single data point (or picture to keep the frame) is not enough to learn anything,
thus one needs a whole data set. An especially prominent data set in the machine
learning community is about the casualties in the titanic accident, even leading to an
open competition [Kaggle, 2012]. Table 3.1 shows an excerpt of the actual dataset.
Each passenger is represented by a vector containing information also known as a
set of features such as sex, age and class one booked and maps it to the response, in
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Surv. Class Name Sex Age Siblings/
Spouse

Parents/
Children

Fare (£)

No 3 Mr. Owen
Harris
Braund

m 22 1 0 7.25

Yes 2 Miss. Emily
Rugg

f 21 0 0 10.5

Yes 3 Miss. Laina
Heikkinen

f 26 0 0 7.925

Yes 1 Mr. Hugh
Woolner

m 46 0 0 35.5

No 3 Mr. William
Henry Allen

m 35 0 0 8.05

Table 3.1: Excerpt of the Titanic dataset taken from Stanford University, 2016

this case their survival.

Consider a dataset consisting of the input X and the response Y. We assume that the
dataset was produced by a true model f

Y = f (X) + ε (3.1)

where ε is random noise with the expected value E[ε] = 0 often assumed to be
normal distributed. The goal of machine learning is now to learn a model f̂ to ap-
proximate the true model to get an estimation ŷ of the true response in a process
called training. Because even a perfect approximation leaves an error of ε it is also
known as irreducible error. The various methods of training a model can be divided
into three categories:

• Supervised Learning
Input and response are known beforehand. The response is used as ground
truth to train the model by reducing a loss function. We can further subdivide
this category based on the response. If the response is discrete it’s called a
classification problem and a possible loss function is the logistic regression:

L(y, ŷ) = − 1
n

n

∑
i=1

yi log(ŷi)− (1− yi) log(ŷi) (3.2)

If on the response is continuous, it’s called a regression problem and a possible
loss function is the Mean Squared Error (MSE):

L(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.3)

The index i denotes the i-th sample. It is common to normalize the loss function
to keep it comparable across different data sets.

• Unsupervised Learning
Only the input is known, the response and thus a ground truth is not avail-
able. Instead the training tries to enforce a specific property on the response.
The loss L is thus how well this property is fulfilled. For example creates Prin-
cipal Component Analysis (PCA) as the name suggests principal components as
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response. Another example is sparse coding, where the goal is to find a basis
in which the input is sparse. There the response is the sparse encoding. There
also exist unsupervised classification.

• Reinforcement Learning
Neither the input nor the response is known beforehand. Instead they are
discovered by the algorithm by performing actions on its own. The response is
given as feedback to the action hence the reinforcement. This feedback is often
depicted as a score like in a game. It’s increased if a action should be repeated
and decreased if it should be avoided. The model here often called a agent tries
to maximize its score, thus the loss function L would be the negative score.
This type of machine learning is useful in scenarios where the environment
can change on itself or as a reaction to the model. Autonomous driving is
a prominent example of such a algorithm. The agent discovers more of its
surroundings as it moves. If it obeys the traffic law it gets positive feedback,
if it causes damage it gets negative feedback, ultimately improving its driving
skills through experience.
We will ignore this type of machine learning as we won’t be using it in this
thesis.

The performance of the training process scales with the number of samples, however
often increasing the data set size is not feasible or even possible. One can artificially
increase the dataset by data augmentation, i.e. creating new data samples based on
already existing ones. For example one can randomly delete features or translate a
picture.

The model can be described by its parameters θ. The goal of the training process is
to find the optimal parameters θ∗ by minimizing the loss function L. In the special
case of supervised learning this can be described as

θ∗ = arg min
θ

L(y, f̂ (θ; y)) (3.4)

Once f̂ is obtained it can either be used directly to deduce new information like how
much impact each features had on the response also known as feature importance
(did the sex influence the survival rate?), or to predict the response on unseen data
(generalization).

To measure the accuracy of these entities one can use the Bootstrap method. Usually
one needs multiple sets to calculate them, which are often not available. Bootstrap
now simulates multiple sets by randomly drawing datasets with replacement, i.e. a
single data point can occur multiple times. For example to calculate the variance of
a function g(X) on the dataset, one can use bootstrap to calculate its variance. By
creating B bootstrap datasets X∗i the variance is given as

Var(g(X)) =
1

B− 1

B

∑
i=1

(g(X∗i )− ḡ∗)2 (3.5)

where ḡ∗ =
1
B

B

∑
i=1

g(X∗i )

Figure 3.1 illustrates the method of bootstrapping.



12 Chapter 3. Machine Learning

Figure 3.1: Illustration of bootstrapping.

In supervised generalization one always wants evaluate how well a model performs
on unseen data the so called generalization error. Because the very nature of unseen
data is that it’s not available, the error can only be approximated. To determine the
performance the dataset is usually split into a training set and a test set. The first one
is used to train the model, the later functions as unseen data. It can be shown that
the expected MSE on an unseen data can be decomposed into a sum

E[y0 − f̂ (x0)]
2 = Var( f̂ (x0)) + (Bias( f̂ (x0)))

2 + Var(ε) (3.6)

consisting of the following three parts:

• Variance Error
Variance refers to how much the model would vary for different training sets.
A high variance means that the model picked up noise from the dataset.

• Bias Error
The bias is the error produced by simplifying the dataset. If the bias is high the
model failed to generalize the dataset.

• Irreducable Error
This one was mentioned earlier. It’s the error intrinsic to the data itself and
thus cannot be reduced.

Most models have additional hyperparameters that are not trained but rather set be-
fore the training process. These can be used to adjust bias and variance. The process
of hyperparameter tuning consists of training a model and then calculating the error on
unseen data. Using the test set to determine the hyperparameters should be avoided
at any cost as this means it was indirectly used to train the model and thus can no
longer be considered unseen.
Instead one either creates a third set often called validation set, or alternatively if the
dataset is rather small cross validation. There exist multiple variants of this algorithm.
The following describes what is commonly referred to as Leave-one-out cross valida-
tion. First the training set is split into N smaller sets (folds). The model is trained N
times, always putting a different fold aside, which is then used to calculate the er-
ror. The total error is the average of these errors. Figure 3.2 shows a corresponding
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Figure 3.2: Schematic of the leave-one-out cross validation. The data set is split into
a test (red) and train (green) set, the later is further split into 5 folds (blue/orange).
The model is trained 5 times every time leaving a different fold out (orange). The
errors of the 5 trained models is calculated for each using this fold and are finally
averaged.

Figure 3.3: Bias-Variance tradeoff of an example model. With increasing model flex-
ibility the bias de- and the variance increases. The minimum of the generalization
error lies in between.

diagram. This process is usually repeated many times until a good set of hyperpa-
rameters is found. It is beneficial to create different folds for each run.

Ideally a model has low variance and low bias. However as depicted in figure 3.3
one usually increases while the other decreases. One therefore speaks of the bias-
variance-tradeoff. The two extremes of this tradeoff creates another way to categorize
the model error illustrated by figure 3.4:

• Underfitting (low variance, high bias)
The model oversimplifies the data and thus fails to generalize. This happens
more likely to simple models.
In the titanic data set this would be for example the model only using the sex
as criteria.

• Overfitting (high variance, low bias)
The model follows the noise very closely and thus fails to generalize. This
happens more likely to complex models.
In the titanic data set this would be for example the model remembering the
names of passenger.
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(a) Underfit (b) Good Fit (c) Overfit

Figure 3.4: Bias-Variance tuning on an example model.

In the end no model can get rid of all error and thus perfect prediction are not pos-
sible. There are several methods to estimate the prediction interval, often specific
to a machine learning algorithm. We will discuss them alongside the corresponding
algorithms.

As we will see in the following chapters there are many machine learning algo-
rithms. One might wonder which one is the best. However, the no-free-lunch-
theorem states that there is no best algorithm [Wolpert and Marcready, 1997].

Theorem 3.1 (No-Free-Lunch Theorem [Du and S., 2019])
Given the set of all functionsF and a set of benchmark functionsF1, if algorithm A1 is better
on average than algorithm A2 on F1. then algorithm A2 must be better than algorithm A1
on F −F1.

3.2 Decision Tree

While overshadowed by later developed machine learning algorithms, decision trees
are not only playing an important part in many of those algorithms but is also one
of the most intuitive to understand and thus makes a great entry point. They can
be seen as a type of flow chart with no recursion, i.e. a sequence of if-else questions
leading to the result. Due to the branching at each decision and ending in a node,
it is as usual in computer science depicted as an upside down tree, hence the name
decision tree. Figure 3.5 shows a illustration of an actual decision tree trained on the
titanic dataset.

One can easily create a decision tree if the underlying model has already been un-
derstood, which is usually not the case in machine learning. Here it is the goal to
retrieve the necessary decisions from the data itself using features and the corre-
sponding responses. It is thus a supervised algorithm. Because each decision splits
the data in a true and a false set it can also be seen as a partition problem.There are
many algorithms to create a decision tree. In the following the Classification and Re-
gression Trees (CART) algorithm is introduced.

To keep things simple for the beginning a classification problem is used, therefore
a classification tree will be grown. Starting with the whole dataset, first for each fea-
ture all possible splits are determined. Features can be put in the following two
categories:
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Figure 3.5: Decision tree for the titanic dataset with a maximal depth of two. Each
node shows from top to bottom the condition, the gini impurity, number of samples
in node, samples in each category and the assigned class. For the left subnode the
condition holds, for the right not. Male was labeled as zero, female as one. Therefore
the left half are male, the right are female passenger. Interrestengly sex had the most
impact on survival chances.

• Ordinal
The feature has a natural ordering, which is conserved by the algorithm. This
can be for example the product rating on an online shop("good", "mediocre",
"bad"). For k possible values there are therefore k− 1 possible splits. Note that
continuous variables like age or price also fall into this category. While there
is an infinite amount of possible values, there is only a finite and thus discrete
subset present in the dataset.

• Categorial
The feature has no natural ordering and the algorithm must consider all pos-
sible combinations of values. For example the values (red, green, blue) can
be either split into (red,green),(blue), (blue),(green,blue) or (green), (red,blue).
For k possible values there are therefore 2k−1 − 1 possible splits.

For each new subset called a node the impurity is calculated, which indicates how
heterogenous the subset respective to the response is. It is zero if all responses are
equal and has a maximum for an equal distribution of all possible responses. There
are multiple formulas to calculate the impurity, here the Gini impurity or Gini index
is presented

I(A) =
k

∑
i=1

pi(A)(1− pi(A)) (3.7)

where A is the node in question, pi(A) is the proportion of the i-th class in A and k
is again the number of possible responses.

The impurity alone is not enough to determine the best split as surely a split in half
is more beneficial than separating a single case. Instead the improvement of a split s
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of a set A into AL and AR is defined as

∆I(s, A) = I(A)− p(AL)I(AL)− p(AR)I(AR) (3.8)

where p(Ai) is analogous to its previous definition the proportion of Ai in A.

CART considers all possible splits of all features and selects the split s with the
biggest improvement ∆I(s, A). This process is repeated for each new formed node
independently until it’s either pure or a subset fulfills a certain criterion. Termi-
nating nodes are called leaf and are assigned a response by a majority vote of the
training samples inside it. Trees where all leafs are pure are called fully grown. A
criterion can for example be:

• Depth of tree

• Amount of samples in subset

• Minimum improvement necessary

By extending the CART algorithm to regression problems, regression trees are ob-
tained. Instead of a majority vote, the response assigned to a leaf is the average.
Furthermore, the Gini impurity can no longer be used as the distances between re-
sponses would get distorted. Instead the impurity of a subset is calculated using the
Residual Sum of Squares (RSS)

I(A) = ∑
i
(yi − ȳ(A))2 (3.9)

where ȳ(A) is the mean response in A.

Note that RSS differs from MSE by the lack of normalization. The weighting of the
impurity used to calculate the improvement of a split is therefore already implicitly
present. The improvement simplifies to

∆I(s, A) = I(A)− I(AL)− I(AR) (3.10)

Any unseen data that is dropped down the tree gets the response of the leaf assigned.

While decision trees are easy to understand and interpret, they are prone to high
variance. Algorithms that build on decision trees and tackle this problem will be
introduced in the following chapters.

3.3 Bagging and Random Forest

Bagging is a portmanteau and stands for bootstrap aggregating. As the name implies
it’s based on the bootstrap method and elevates its concept from measuring accuracy
to training models. Instead of a single model a whole ensemble of multiple models is
trained using a different bootstrap dataset each time. To get a prediction the result
of each model in the ensemble is either averaged for regression problems or the
majority vote is taken for classification problems.

For identical distributed random variables with variance σ2 and positive pairwise
correlation ρ it can be shown that variance of the average over N values is [Hastie,
Tibshirani, and Friedman, 2009]
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ρσ2 +
1− ρ

N
σ2 (3.11)

Averaging reduces the variance. Therefore bagging is especially useful for models
with high variance and low bias such as decision trees. With increasing number of
models in the ensemble the second summand vanishes, but the first remains. This is
where random forest take over.

Random forest introduced in Breiman, 2001 also creates an ensemble of decision
trees, but slightly varies the process of growing the trees. CART considers at each
split all features. If there’s a strong feature, i.e. one that divides the outcome ex-
ceptionally well like sex in the titanic dataset, it will most likely always be selected
first and the trees become correlated (high ρ). Random forest restricts the number
of features CART can choose from by randomly selecting less features than there are
available at each split independently to reduce the correlation and thus ρ. Ultimately,
this reduces the variance of the ensemble as shown before. How many features are
chosen is a hyperparameter.

Due to the very nature of bootstrapping there exist for each model in the ensemble a
set of data points which have not been used to train the model, hence the name Out-
of-Bag (OOB). They can be used to estimate the models’ and thus the entires ensem-
ble’s Out-of-Bag error as an alternative to cross validation. As they are a byproduct
of the training process they are computational faster.

Meinshausen, 2006 extended the concept of Random Forest in regression and created
what he called Quantile Regression Forest which does not only predict the expected
value of an input, but also its prediction interval. Only the algorithm itself and not
the math behind will be discussed. First each training sample with input Xi and
response Yi is assigned a weight wi,t equal to the inverse number of total samples
in the leaf Lt(Xi) it belongs to independently for each tree t. For a new input X the
α-quantile is then

Qα(X) = inf
Y

n

∑
i=1

B

∑
t=1

wi,t1{Lt(Xi)=Lt(X)}1{Yi≤Y} ≥ α (3.12)

The sum consists of the weights wi,t of all training samples among all trees that
ended in the same leaf as the new input and have a response less or equal than Y.
The quantile is then the infimum of Y with respect to the sum, which can be used as
usual to create prediction intervals, e.g. a 90% prediction interval can be calculated
as

I90%(x) = [Q0.05(x), Q0.95(x)] (3.13)

3.4 Gradient Boosted Regression Trees

Like bagging boosting utilizes an ensemble of models to improve their performance,
but trains the individual models sequential using knowledge from previous itera-
tion. The training samples are weighted in the training process. After each model
added to the ensemble the weights of correct predicted samples are reduced and the
one of falsely predicted ones increased. Subsequently models are therefore used to
predict hard to learn edge cases. Boosting furthermore uses weak learners, i.e. models
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that are more prone to underfitting, which can get as extreme as decision trees with
only two leafs, often referred as stumps.

Boosting can be applied to almost any machine learning algorithm, but decision
trees are the common choice. The process of boosting is shown in the case of regres-
sion trees (Boosted Regression Trees). The first tree f̂ 1 is trained as usual. After each
new tree f̂ b the residuals ri used to determine the impurity in the decision tree are
updated based on the previous residuals using the learning rate λ as a hyperparam-
eter:

ri ← ri − λ f̂ b(xi)

After B iteration and thus B trained trees the boosted model is as follows

f̂ (x) =
B

∑
b=1

λ f̂ b(x)

Gradient Boosted Regression Trees (GBRT) alternates the algorithm by utilizing the con-
cept of Gradient Descent, i.e. functions are updated according to fi+1 = fi + α∇L( f )
with a loss function L and a learning rate α which converges to zero loss.

There are multiple possible loss functions that can be used in GBRT. Common are
the L1 and L2 norm, but one can also use the Huber Loss to calculate quantile and
thus get prediction intervals analog to the previous section

L(y, f (x)) =

{
[y− f (x)]2 for |y− f (x)| ≤ δm

2δm|y− f (x)| − δ2
m otherwise

where δm = αth-quantile{|yi − f (xi)|}

One has to keep in mind, that because boosting focuses on hard to fit samples it
will for arbitrary many iterations eventually start to overfit making the number of
iterations a crucial hyperparameter. This distinguishes it from random forests as
their performance saturates with increasing ensemble size. The overfitting can be
dampened by using regularization, which is a technique introduced in the follow-
ing sections. Notwithstanding, GBRT is one of the standard algorithm in machine
learning capable of tackling even complex task. An example of particular interest to
physicist might be ability to detect the higgs boson [Chen and He, 2014].

3.5 Compressed Sensing and Dictionary Learning

The goal of Compressed sensing is to reconstruct an unknown signal from randomly
spaced measurement. It is therefore an unsupervised learning algorithm. The algo-
rithm exploits the fact that most signals are sparse in a specific domain. For example
is music sparse in the fourier space as chords have only specific possible frequencies.
Even images tend to be sparse in the wavelet basis, which is actively used in mag-
netic resonance drastically increasing the patient throughput[Lustig et al., 2008]. Du
and S., 2019 and especially Brunton and Kutz, 2019 give a good explanation of the
math behind the algorithms in this chapter. The following is a summary of the key
concepts based on those two books.
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Given a signal x ∈ Rn with a sparse representation s in Ψ (e.g. Fourier-Basis) we
can describe the measurements y ∈ Rp mathematically by a measurement matrix
C ∈ Rp×n

y = Cx = CΨs (3.14)

Assume that only the measurements are known. Then the signal can reconstructed
by first calculating ŝ

ŝ = arg min
s
‖s‖0 subject to y = CΨs (3.15)

where ‖·‖0 stands for the l0 pseudo-norm, which is equal to number of non-zero
entries, also known as cardinality.

The minimization of the l0 norm is computational very expensive and thus not fea-
sible in practice. It can however, if certain conditions on the measurement matrix C
are holding, be relaxed to a convex l1 minimization problem

ŝ = arg min
s
‖s‖1 subject to y = CΨs (3.16)

A popular algorithm to solve that minimization problem is the Least absolute shrink-
age and selection operator (LASSO). For a equation b = Ax it minimizes the l2 norm
of the residual Ax− b plus the l1 norm of x itself. While the l2 tends to equalize all
entries in x, the l1 norm enforces sparsity. The weight of these two can tuned by a
hyperparameter λ. This is especially useful as often times the actual cardinality of
the sparse signal is not known beforehand. For compressed sensing LASSO is the
following

ŝ = arg min
s
‖CΨs− y‖2 + λ ‖s‖1 (3.17)

Figure 3.6 shows an example of compressed sensing algorithm in action. Signals
up to 396 Hz were reconstructed from only 100 measurements, which seems to con-
tradict the Nyquist-Shannon theorem telling us that only frequencies up to 50 Hz
should be possible to reconstruct. However, compressed sensing exploits sparsity
(only 3 frequencies present) and thus has stronger assumption about the signal. An
even more important property is the randomness in the location of measure points.
Because of this some measure points are very close together resulting in a locally
high sampling rate. If the measure points were equal distributed one could only
reconstruct frequencies up to 50 Hz as Nyquist-Shannon states.

The most important hyperparameter in compressed sensing is the choice of an ap-
propriate base like fourier for music. It is not always clear which to choose and even
if there’s a good chance that there’s still some performance gain by using a to the sig-
nal tailored basis. To produce such a tailored basis is the goal of dictionary learning
which is explained in more detail in Mairal et al., 2009.

Given a training set of signals X = {x1, . . . , xn} ∈ Rm×n one wants to find a dictio-
nary D ∈ Rm×k whose columns are basis vectors (in this context also often referred
as atoms) by minimizing a loss function
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(a) Signal with measurements in red (b) Power spectrum of signal

(c) Reconstructed signal (d) Reconstructed power spectrum

Figure 3.6: Example of compressed sensing with a C major accord as signal. Sig-
nal was reconstructed from 100 measurements (marked as red dots in the signal)
using the discrete cosine transformation as sparse basis and LASSO(λ = 0.08) as
minimizer.
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Figure 3.7: Illustration of a perceptron with input vector x, weight vector w, bias b
and output y with a step activation function.

min
D∈C,α∈Rk×n

1
n

n

∑
i=1

(
1
2
‖xi − Dαi‖2

2 + λ ‖αi‖1

)
(3.18)

C ,
{

D ∈ Rm×k s.t. ∀ columns dj :
∥∥dj
∥∥2

2 ≤ 1
}

which is similar to the loss function in LASSO. The constraint on the columns and
thus the basis vectors of the dictionary is to prevent the sparsity constraint being
circumvented by decreasing α while increasing D.

Dictionary learning is obviously also an unsupervised learning algorithm.

3.6 Neural Networks

Neural Networks especially in the realm of deep learning are at the heart of most
modern public known artificial intelligences. Most elaborate image filters now widely
used are implemented using deep learning, e.g. is CartoonGAN a neural network
which "cartoonizes" images [Chen, Lai, and Liu, 2018]. Unfortunately, the aston-
ishing performance also lead to malicious usage widely known as "Deep Fakes"
[Nguyen et al., 2019].

There are hardly any new books published about machine learning without at least
mentioning neural networks. In fact, all books stated at the beginning of this chapter
cover neural network. Goodfellow, Bengio, and Courville, 2016 even exclusively
handles deep learning as the title suggests and is together with Du and S., 2019 the
main source for this section, which is by no means a complete summary, but handles
only the parts used in this thesis as the topic is to broad to handle fully here.

The motivation behind neural networks was to mimic the human brain by model-
ing its building blocks, i.e. the neurons. While there are many models of a neuron
that can be used in machine learning, the one widely used today and even became
synonymous for neurons is the perceptron developed by Rosenblatt in 1958 [Rosen-
blatt, 1958], which was also the first one that was not trained by hand but trained
itself using data.

The perceptron as depicted in figure 3.7 is based on a linear model, i.e. it forms
the weighted sum over its inputs x and adds a bias b, before putting the sum in
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Name Function
Sigmoid 1

1+exp(−x)
ReLU max(0, x)
Tanh tanh(x)
Softplus log(1 + exp(x))

Table 3.2: Activation func-
tions Figure 3.8: Plots of activation functions

Figure 3.9: Fully Connected Network

the activation function f (). There are various activation functions in use and its only
prerequisite is its nonlinearity. Table 3.2 and figure 3.8 show some popular ones. The
original perceptron is a binary classifier using a simple step function as activation
function denoting the two classes as −1 and 1:

y = f (~wT~x + b) (3.19)

where f (x) =

{
1 for x > 0
−1 for x ≤ 0

Among the many limitations of such linear models is the most famously its inability
to learn the XOR function which lead to neural networks becoming unpopular. This
was later overcome by simply joining many perceptrons, thus creating a multilayer
perceptron (MLP) organized in layers as depicted in 3.9. The first layer is the input
layer, the last the output layer, while the layers in between are referred to as hidden
layers. Networks where the outputs of the previous layer is only used in neurons of
the next one are called feedforward network (FFN) and if all outputs of the previous
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layer are used in every neuron of the next layer are called Fully Connected Networks
(FCN). Such networks are capable of much more complex models than binary clas-
sification, as stated by the universal approximation theorem:

Theorem 3.2 (Universal Approximation Theorem [Goodfellow et al., 2016])
[A] feedforward network with a linear output layer and at least one hidden with any "squash-
ing" activation function [...] can approximate any Borel measurable function from one finite-
dimensional space to another with any desired non-zero amount of error, provided that the
network is given enough hidden units.

During the training process first a training sample X is put into the network to cal-
culate a specified loss, which is known as the forward pass. The gradient is then
calculated by consecutive applying of the chain rule starting by the loss function
until the input is reached again. Because the flow is now in the opposite directions
this process is known as backpropagation. This is sometimes falsely referred to as the
algorithm to train the network. There are several training algorithm which usually
base on gradient descent (the bias b is here part of w)

w← w− α∇L(y, f̂ (x)) (3.20)

where α is the learning rate and a hyperparameter.

A popular example is Stochastic Gradient Descent (SGD), which is a compromise be-
tween calculating the gradient for the whole dataset and for each data sample in-
dividually by forming random subsets of the data set called mini-batch. The first
approach is often technically not possible and tends to get stuck in local minima,
while the second one is too noisy. Adam builds upon this idea and includes first and
second order momentum. There are many more algorithms, unfortunately there is
again no one best algorithm but must be determined individually. Because of often
times large amount of variables involved in a neural network second-order gradient
methods are not technical possible, despite converging faster, i.e. in fewer iterations.

In order to be able to do the first forward pass, the weights must have been initial-
ized. Choosing them has a great impact on not only the time needed to train the
model, but even on its success. They must not be zero because then the gradient
would also be zero, thus rendering the gradient descent useless. The also have to be
randomly distributed in order to break symmetry as gradient descent cannot achieve
this. If the model were symmetric, all neurons of a layer would be the same and thus
cannot adopt to complex function. Glorot and Bengio, 2010 gives a great insight on
this topic. In a nutshell one wants the weights such that the gradient won’t collapse
or explode. A common heuristic to achieve this knwon as Xavier Initialization is to
set the bias to zero and uniformly distribute the weights in the interval

[
− 1√

n , 1√
n

]
where n is the number of neurons of the previous layer.

Especially in neural network is it usual to use regularization, i.e. adding a loss func-
tion based on the model itself and not the data. A common one is ridge regression also
known as weight decay. It adds the l2 norm of the weights to the cost function and
thus enforces the network to use all neurons and not rely on only a few specialist
neurons (setting the weights of the other neurons to zero). Its second name got it be-
cause through gradient descent the weights are effectively exponentially decaying.
Dropout (figure 3.10) takes this idea a step further by making it a part of the network
itself. Applied as a intermediate layer after a hidden layer it discards randomly se-
lected values only during training. This also prevents specialist neurons as they can
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(a) Neural Network without Dropout (b) Neural Network with Dropout

Figure 3.10: Illustration of dropout. Neurons depicted by empty circles are ignored.
It is somewhat disputed wether dropout should include the input neurons.

by chance be silenced. During predictions it acts like an ensemble algorithm as there
have been multiple (entangled) networks with the same function trained.

A more complex problem requires unsurprisingly a more complex network. One
often refers in this context to the capacity of the model. If the capacity is too low, it
will heavily underfit, but with increasing capacity the model becomes harder and
harder to train. It needs more data to prevent it from overfitting as it will happily
just remember the data set if it fits in its capacity. Even with the right capacity the
model will eventually start to increase its generalization error again and overfit. A
common approach is to just stop training once the error raises again, known as early
stopping.

Increasing the depth, i.e. adding more layers, increases the capacity better than
adding more neurons to the layers. Unfortunately, such deep neural networks are hard
to train, as the chance of the gradient vanishing or exploding increase with each
layer. Glorot and Bengio, 2010 is again a great source to understand this problem.
Ioffe and Szegedy, 2015 accomplished a breakthrough in this matter by introducing
batch normalization. In a nutshell is it an additional layer like dropout whose job is to
restore a gaussian distribution with learnable mean and variance. This sanitizes the
gradient and allows much deeper networks. The reasoning behind that is the same
as for the weight initialization but won’t be discussed here.

There exist a form of neural networks known as Recurrent Neural Network (RNN)
that unlike all previously mentioned machine learning algorithm is able to directly
process sequential data of variable length. By carrying over a hidden state ~h(t) the
same neural network denoted by its parameters θ can be reapplied for each item ~x(t)

in the sequence:

~ht = f (~ht−1,~xt; θ) (3.21)

The last hidden state can then be further used. For example can a RNN process
the weather of the last 10 days and pass the hidden state to a conventional FCN to
predict the weather of the next day. The hidden state can also be passed to another
RNN to produce another sequence. The trick here is that the second RNN can emit
a special token to mark the end of the sequence. This approach is used in natural
language translation.

A hurdle in training RNNs is to prevent it from forgetting information from the
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(a) LSTM with two hidden states ht and ct (b) GRU with one hidden state h

Figure 3.11: Illustration of a LSTM and a GRU cell for RNNs. σ is the sigmoid and τ
is the tanh activation function.

⊙
is the element-wise multiplication. Based on Phi,

2018.

Figure 3.12: Illustration of an autoencoder. It tries to recreate the original but has to
compress the input in order to be able to pass it through the bottleneck.

beginning of the sequence. This is usually achieved by having a direct path for
the gradient to flow back to the beginning. Figure 3.11 shows two of prominent
representatives models used: Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRU).

Neural networks can also be used in an unsupervised fashion for feature extraction,
i.e. compressing the input and thus reducing its dimensionality. Such neural net-
works are called Autoencoder and are illustrated in figure 3.12. They work by forcing
the input through a bottleneck and try to reconstruct the original input, thus the loss
is the difference between reconstructed and original input. The bottleneck can than
be used to train another model.





CHAPTER 4

Preprocessing and Feature Engineering

Feature Engineering describes the process of modeling new features (feature extraction)
from or selecting a subset (feature selection) of the raw input data [Du and S., 2019].
While time consuming and rarely automatable, it’s still worth to spend most of the
time to refine features, since the performance of machine learning models are highly
sensitive to their quality [Heaton, 2017].

The dataset was created using the three blazar catalogues 4LAC [The Fermi-LAT
collaboration, 2019], 3HSP [Chang et al., 2019] and 5BZCat [Massaro et al., 2015] to
get a list of known blazar1. The actual SEDs that are used as input were created by
the VOUBlazar tool [Chang, Brandt, and Giommi, 2019], which internally uses many
more catalogues to create an as complete SED as possible.

This chapter shows the preprocessing of the raw input data as generated from the
VOUBlazar tool and presents several engineered features, which will be used later to
train models. Doing so specifically tackles the problem of having a variable length
in the raw input while the models require a fixed size, and the problem of bias in the
data.

4.1 Data Preparation

The VOUBlazar tool creates a human readably representation of a SED by merg-
ing several astrophysical catalogues [Chang, Brandt, and Giommi, 2019]. Figure 4.1
shows an example output. It consists of several measurements each including the
frequency, energy flux, the time of the measurement and some metadata about the
source the tool retrieved the data.

The metadata holds no useful information for determining νpeak and thus will be
ignored. The measurement time is for most measurements a fixed default value, i.e.
it’s missing and thus not useful and will also be ignored. Therefore the first step in
the preprocessing is to parse the text file to retrieve a machine readable version of
frequency, flux and its errors for each measurement.

Some measurements have zero frequency or zero flux, which makes physically speak-
ing no sense and are thus discarded. Furthermore, measurements with flux outside
their error range are also discarded. The error was deemed to provide little informa-
tion to the task as it is often times dominated by the sources variability and won’t

1A special thanks to Paolo Giommi for refining the νpeak on several hundred blazars
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Figure 4.1: Output of the VOUBlazar tool for an example blazar. Only the first few
lines are shown. In total it has over 10,000 lines which makes it one of the bigger
ones.

Figure 4.2: Schematic of the preprocessing step to retrieve machine readable data. ν
denotes the frequency and Φ the flux density.

be used further. At this step of the preprocessing only flux and frequency with sane
values remain. It was found, that the overall performance of the models signifi-
cantly increases if the logarithm of flux and frequency were used. Here the decadic
logarithm was chosen. Lastly, the ground truth, i.e. the νpeak for the blazar was de-
termined by hand and is stored also in decadic logarithm in the text files name. One
such a filename is SED_13.24_133.7036_20.1085.txt and consists of the blazar’s νpeak
and its coordinate. Since each file only consists of measurements of one blazar, this
process is repeated for each blazar in the dataset. Figure 4.2 visualizes the process
so far.

The dataset contains 3,793 blazars with annotated νpeak. Before any further feature
engineering a test set containing 700 of these blazars is put aside for later evaluation.

Figure 4.3 shows a visualization of the training set. It’s rather obvious to see, that
some bins are only filled for blazars with νpeak in certain ranges and are thus strongly
biased. If not for the histogram, this might have gone unnoticed during the training.
To show this, a simple random forest is trained on this biased data set (see 4.4a).
While the predictions seem rather good, it actually exploited heavily the bias in the
dataset. The corresponding feature importance score (see 4.4c) conclude, that the
random forest is especially interested in frequencies in the logarithmic range of 10.9 -
11.1. As figure 4.4e shows, wether that specific bin is empty or not already separates
the data set very well. Unfortunately, this also means that this random forest is
useless for any new unseen data, which does not follow that bias.
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(a) Binning edges width frequency density

(b) Histogram of Bins Filled against νpeak

Figure 4.3: Visualization of the dataset used to train the models. Since some fre-
quency ranges are more dense with measurements than other the bins are not uni-
form, but are adjusted to get a more uniform filling. a) shows the bin edges including
the frequency density of the measurements. Note that the goal was to get the his-
togram uniform, thus some bins seem to get more data than others. b) shows the
histogram for these bins against the νpeak. One can clearly see clustering of the bins
with some only present in specific ranges, thus being biased.
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(a) Biased predictions (b) Bias reduced predictions

(c) Feature importance biased random forest
(d) Feature importance bias reduced ran-
dom forest

(e) Distribution based on existence of sam-
ples around 100 GHz

(f) Histogram of bias reduced data set

Figure 4.4: Before (left) and after(right) of data augmentation to reduce bias, visual-
ized by two separately trained random forests. While both seem to perform well, the
biased one relies strongly on the log frequency range 10.9 - 11.1. E) shows that even
solely on wether this bin is empty or not, the peak is already well separated. The
unbiased random forest considers more frequencies. Lastly, F) shows a histogram of
the enhanced dataset.
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In order to reduce the bias in the dataset it is augmented by oversampling especially
samples with underrepresented peak frequencies while undersampling especially
overrepresented frequencies. To do so, first the SED are binned (into label bins)
according to their νpeak. Afterwards, for every copies of randomly selected members
are made until a specified amount in every label bin is reached. However, 19 from
the 34 frequency bins (as in figure 4.3a) are randomly selected with replacement to be
deleted in the copy. The probability of a frequency bin to be chosen is proportional
to the amount of total (i.e. not regarding the label bins) non empty frequency by the
power of four, to better smooth the distribution. Copies with less than 10 sample
points are discarded as νpeak is assumed to be no longer determinable. With this
data augmentation the dataset grow to a total of 10,233 SEDs, while on average 12
distinct not necessarily empty bins were deleted. Figure 4.4f shows the histogram of
the enhanced data set. While the bias was drastically reduced, it’s still present and
must still be considered during training.

4.2 Binning

In the previous section binning was already used to demonstrate the bias in the
dataset. However no justification for the choice of the binning edges were made,
which is made up for here. Starting with the set of all frequencies present in the
dataset, they are rounded to a specific width, e.g. to the next 0.1 for a width of 0.1.
Gaps in between are merged with the surrounding bins if they are small enough.
Bins with hardly any data inside are also merged. Finally, biased bins are removed.

Figure 4.6 shows the histogram for four different widths. Their exact edges can be
found in the appendix. Wider bins seem to suffer from bias, while narrower bins
ignore more data. Figure 4.5 shows the error distribution for random forests trained
for each bin configuration. It seems all four configuration achieve about the same
performance. Therefore, the second configuration was chosen since it provides the
best balance between bias and frequency coverage.

Figure 4.5: Performance of different binnings
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(a) 0.1 width (b) 0.2 width

(c) 0.3 width (d) 0.5 width

Figure 4.6: Histograms for various binning configurations. Biased bins have been
removed. Additionally, an kernel density estimate of the distribution of νpeak is plot-
ted on top of the bin edges.
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4.3 Compressed Sensing

A major drawback of the binning was that biased bins had to be ignored. Instead
of ignoring them it would be better to fill in missing data and thus remove the bias.
One way to achieve this is to use compressed sensing as described in section 3.5. Here
the implementation of scikit-learn is used [Pedregosa et al., 2011]. An important as-
sumption for this to work is that there exist a sparse representation of a SED. While
basis like the Fourier-basis might be a reasonable choice, it makes more sense to cre-
ate a basis tailored to the problem to enhance the algorithms performance. Thus, as
a first step one wants to create such a basis, i.e Dictionay learning.

Dictionary learning requires a set set of complete signals, which in the case for blazar
or AGN in general does not exist, since for some frequency ranges no telescopes ex-
ist. It this therefore necessary to fall back on synthetic data. Here a set of 500,000
synthetic SEDs were created using naima as described in section 2.2. The exponen-
tial cutoff power law was chosen as particle distribution as it seems to provide a
good balance between complexity and completeness. As radiation models were syn-
chrotron with variable magnetic strength and inverse compton with three different
thermal photon sources and varying temperature, both sharing the same maximum
electron energy. The ranges on which these parameters were sampled from are listed
in table 4.1. While the param ranges seem to be ridiculously wide, it was chosen on
purpose since it would harm the performance to not simulate exotic SEDs while a
few "garbage" ones would not. The later one will at best result in some basis vectors
that later simply won’t be chosen by the algorithm. Since the goal is to find a sparse
representation this does not matter at all. Nevertheless, a more reasonable selected
parameter space might improve the performance.

The SEDs are binned into ranges from 6.9 to 27.5 into widths of 0.1 of the logarithmic
frequency space matching the range of the real dataset, thus 206 bins in total. Follow-
ing the default parameter of scikit-learn 206 basis vectors were chosen, thus creating
a square dictionary. Figure 4.7 shows a selection of basis vectors of the dictionary.

Figure 4.8 shows two reconstructed SEDs from the augmented training set using
compressed sensing with the Lasso algorithm (λ = 0.001 with a tolerance of 10−4)
and the previously described dictionary. It fills in missing measurements with rea-
sonable data as long as there is enough real data nearby. If this is not the case like
in the second example the algorithm starts to hallucinate and completely makes up
new data. However, since the main interest lies inside the first bump weird data at
other regions should hopefully not harm the performance of the predicting models
later on. This assumption has to be tested though.

Param Range

A 1× 1029 to 1× 1034 eV−1

E0 1× 1012 to 1× 1015 eV
α −2.0 to 3.0
Ecut 1× 108 to 1× 1013 eV
β −2.0 to 3.0
B 1× 10−9 to 1× 10−7 T

Param Range
Emax 1× 1010 to 1× 1020 eV
TNIR 1500 to 6000 K
TFIR 5.0 to 800 K
ρNIR 0.5 to 4.0 eV cm−3

ρFIR 0.1 to 2.1 eV cm−3

Table 4.1: Parameters of the synthetic dataset used for dictionary learning.
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Figure 4.7: Selection of basis vectors produced by dictionary learning for SEDs. Due
to the nature of the algorithm the exact flux densities have no physical meaning and
are thus omitted. Most of the basis vectors resemble SED very well, although maybe
upside-down. Only a few have no resemblance at all like the last one.

Figure 4.8: Example of a reconstructed SED using compressed sensing and the tai-
lored dictionary. The Lasso algorithm was used with λ = 0.001 and a tolerance of
10−4.
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4.4 Autoencoder

Smaller bin widths seem beneficial as it allow for more detail. However, since most
bins would be empty this way broader ones were chosen previously. One way to
circumvent the problem is to compress the binned data such that the data becomes
dense. Here it is achieved by utilizing an autoencoder which tries to encode the
whole SED and decodes or reconstruct it given the encoded data and the frequencies
at which the flux was measured. By reapplying the frequencies the encoder does not
need to remember where the measurements happened and thus the encoded data
should not include wether a specific frequency was measured ultimately reducing
the bias. To speed up the training process, the data was binned in the same manner
as for the compressed sensing, i.e. all bins have 0.1 width.

Parameter Value
Learning rate 6.756× 10−3

Weight decay 1.014× 10−5

Num layers 2
Hidden size 16
Encoder dropout 37.10%
Decoder dropout 1.19%

Table 4.2: Hyperparameters for autoencoder. Note that a layer consists of two GRUs
(forward and backward) and the hidden size is per GRU, thus the total hidden state
is actually 128.

The architecture of the encoder is illustrated in figure 4.9. Both encoder and decoder
consists of two layers of bidirectional GRUs including dropout, while the decoder
additionally features a final linear layer to output only the flux for each frequency.
The used hyperparameters are listed in table 4.2 and were deduced by a randomized
search.

Figure 4.10 shows two example of the autoencoder reconstructing an SED. While it
is in most cases very accurate it seem to struggle with regions showing high vari-
ability. Since this also occurs in regions where the νpeak is located it might hurt the
performance.

For models predicting νpeak the final hidden state of the encoder is used as input and
consists of 64 values in total. Considering that the original input featured 412 values
(frequency and flux for each of the 206 bins) a compression by a factor of 6.4 was
achieved.
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Figure 4.9: Architecture of the autoencoder. It consists of two layer bidirectional
GRUs for both encoder and decoder, i.e. 8 independent GRUs in total. The encoder
is feeded with both the flux Φ and the frequency ν. The accumulated last hidden
states of each layer form the compressed data and is used as initial hidden state for
the decoder, which now only gets the frequencies. The output of the GRUs of the
decoder are put through a linear layer to obtain the flux for each frequency.

Figure 4.10: Examples of the autoencoder reconstructing SEDs. Most are well re-
constructed like the first example. However, in some cases like the second one the
autoencoder starts to smooth the flux.



CHAPTER 5

Predictive Models

Using the features engineered in the previous chapter several machine learning al-
gorithms as described previously will be used to train one model per feature set and
algorithm. Their task is to predict the νpeak of an SED with an 95% prediction in-
terval. This chapter is organized by the algorithm used and ends with an overview
and comparison of the models’ performances, which are measured using the test set
created at the beginning of the data preprocessing. The test set as mentioned before
has not been augmented like the training data set and thus represents unseen data
as one would get from the VOUBlazar tool for new blazars.

The algorithms used to train the predictive models were chosen based on a survey
performed by Kaggle. Ignoring linear regression, the three most used algorithms
were Random Forest, Gradient Boosting and Neural Networks [Kaggle, 2020], which
all have been discussed previously. For the actual implementation of these algo-
rithms scikit-learn [Pedregosa et al., 2011] were chosen for the first two, while for
neural networks PyTorch [Paszke et al., 2019] was chosen, with the addition of Py-
Torch Lightning [Falcon, 2019] and Tune [Liaw et al., 2018] to enhance model training.
Additionally TensorBoard, which is part of TensorFlow[Abadi et al., 2015] was used to
monitor the training of neural networks.

5.1 Random Forest

Parameter Binning Compressed Sensing Autoencoder
#Trees 500 1,000 1,000
λ 8× 10−4

Tolerance 8× 10−4

Table 5.1: Hyperparameters used for random forest training after tuning.

The implementation of random forest in scikit-learn does not provide the distribution
of the training set on the leafs, which is required in equation 3.12 to calculate the
quantiles. This problem can be circumvented by fully growing the trees in the forest,
thus each training sample has the weight one. Because of this, the only remaining
tunable hyper parameter besides those intrinsic to the features is the number of trees
in the forest. Table 5.1 lists the used hyperparameters, which have been deduced
after a randomized grid search. The number of trees has been chosen as the maximal
amount after which no further improvement has been possible.
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(a) Predictions for binned features (b) Prediction Intervals for binned features

(c) Predictions for compressed sensing (d) Prediction Intervals for compressed
sensing

(e) Prediction for autoencoder (f) Prediction Intervals for autoencoder

Figure 5.1: Illustration of the performance of random forest for each feature set. The
left column shows a histogram of the predicted νpeak against the ground truth with
the median as a solid and the 80% quantile interval as dashed black lines. The right
column shows the centered prediction interval (95%) sorted by their width with the
ground truth marked as orange dots. Additionally the percentage of outliners above
and below their respective prediction interval is shown.
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(a) Median absolute error (b) Median PI width

Figure 5.2: Median absolute error of the prediction and the median prediction in-
terval width for random forest on the test set for each feature set. The curve was
created by a moving window and smoothed with a cubic spline. The dashed line
shows the density of the ground truth in the test set.

Figure 5.1 illustrates the performance and figure 5.2 the errors for the random forests
trained on each feature set. All models are capable of predicting νpeak with an accept-
able performance, but show problems with edge cases, i.e. those with very small or
very huge νpeak. While some prediction have low prediction intervals, more than half
were bigger than ±1. Notable is that the compressed sensing indeed improved the
performance as one can see by the median more strictly following the ground truth
in the histogram and the prediction interval being narrower, although with a slightly
worse coverage. The autoencoder on the other hand shows the worst performance
in both prediction and prediction intervals. The errors are well behaved and show
no unexpected behavior.

5.2 Gradient Boosting

Gradient boosting is a special case since it is not a single model per feature set but
three, one for each quantile: 2.5%, 50% and 97.5%. Thus, there are also three sets of
hyperparameters as listed in table 5.2. They have been deduced after a randomized
grid search.

The performance of this algorithm is like before illustrated in figure 5.3. The predic-
tions on the binned feature set is only good on a small range of νpeak and thus hardly
usable. To make things worse, the prediction intervals are also way to wide to be
of any use. The usage of compressed sensing does improve the performance, mak-
ing the prediction even useful, the prediction intervals however are still to wide and
thus not useable. The autoencoder outperforms the binned feature set but could not
even reach the performance of the compressed sensing. Not only is the prediction in-
terval still too broad to be usable, it also shows a strong tendency of overestimating
νpeak.

The errors as illustrated in figure 5.4 show interesting behavior as only the binned
feature set struggles with predicting peaks around 100 THz. Furthermore, while
having similar predicting performance the compressed sensing and autoencoder
produce better prediction intervals on different frequency ranges, thus combining
them would improve the performance. Unfortunately, that would still be not good
enough to be usable. Apparently the gradient boosting algorithm boosted the noise
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(a) Predictions for binned features (b) Prediction Intervals for binned features

(c) Predictions for compressed sensing (d) Prediction Intervals for compressed
sensing

(e) Prediction for autoencoder (f) Prediction Interval for autoencoder

Figure 5.3: Illustration of the performance of gradient boosting for each feature set.
The left column shows a histogram of the predicted νpeak against the ground truth
with the median as a solid and the 80% quantile interval as dashed black lines. The
right column shows the centered prediction interval (95%) sorted by their width with
the ground truth marked as orange dots. Additionally the percentage of outliners
above and below their respective prediction interval is shown.
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Parameter Binning Compressed Sensing Autoencoder
# Trees (2.5%) 100 175 250
Learning rate (2.5%) 0.2 0.01 0.2
Max tree depth (2.5%) 2 2 2
Min samples leaf (2.5%) 30 10 20
Min samples split (2.5%) 10 20 30
# Trees (50%) 150 250 350
Learning rate (50%) 0.05 0.05 0.15
Max tree depth (50%) 20 20 25
Min samples leaf (50%) 1 5 20
Min samples split (50%) 20 5 2
# Trees (97.5%) 100 150 150
Learning rate (97.5%) 0.01 0.1 0.01
Max tree depth (97.5%) 15 2 2
Min samples leaf (97.5%) 30 25 30
Min samples split (97.5%) 20 5 30
λ 1× 10−4

Tolerance 5× 10−4

Table 5.2: Hyperparameters used for gradient boosting training after tuning. Note
that for each quantile a separate model was trained and tuned, thus each model has
a different set of hyperparameters.

(a) Median absolute error (b) Median PI width

Figure 5.4: Median absolute error of the prediction and the median prediction inter-
val width for gradient boosting on the test set for each feature set. The curve was
created by a moving window and smoothed with a cubic spline. The dashed line
shows the density of the ground truth in the test set.
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to much and thus was not able to generalize the data. It seems that the algorithm is
not suitable for this particular data set.

5.3 Neural Network

Parameter Binning Compressed Sensing Autoencoder
Input size 52 206 64
Layer 1 152 (11.62%) 120 (3.05%) 112 (29.84%)
Layer 2 80 (14.95%) 104 (3.16%) 80 (6.84%)
Layer 3 72 (2.46%) 80 (33.71%) 64 (17.86%)
Layer 4 48 (3.21%) 64 (19.72%) 64 (1.82%)
Learning rate 1.810× 10−3 9.788× 10−4 6.658× 10−3

Weight decay 1.635× 10−5 2.429× 10−4 4.235× 10−5

λ 1× 10−4

Tolerance 5× 10−4

Table 5.3: Hyperparameters used for neural networks training after tuning. Each
layer has two hyperparameters: The number of neurons in that layer and the
dropout chance noted in parentheses behind.

For neural networks a method to calculate prediction intervals have yet to be dis-
cussed. In fact, there are numerous algorithms to accomplish this as layed out by
Cavlo-Pardo, Mancini, and Olmo, 2021. In that paper a novel approach has been
proposed using an ensemble of slightly different neural networks architectures re-
placing the classic dropout with a bernoulli mask and only predicting the value. The
prediction interval is then calculated using the ensemble. However, this method’s
performance turned out to be unsatisfactory as in this case it only produced a nearly
constant sized prediction interval. Instead it is calculated as described by Laksh-
minarayanan, Pritzel, and Blundell, 2017, where the network not only predicts the
actual value but also the standard deviation. The loss to train the model is than
the negative log likelihood of a gaussian distribution. The neural networks used in
this work outputs the actual νpeak with the squared standard deviation σ2 and were
trained by minimizing double the negative log likelihood following the previously
established naming scheme for algorithms:

L(y, ŷ(x)) = −2 log p(y|x) = log σ2(x) +
(y− ŷ(x))2

σ2(x)
+ const (5.1)

The results are further improved by utilizing an ensemble consisting of M = 20
members. The individual results are combined using the following equations:

ŷ∗(x) =
1
M

M

∑
m=1

ŷm(x) (5.2)

σ2
∗(x) =

1
M

(
M

∑
m=1

σ2
m(x) + ŷ2

m(x)

)
− ŷ2

∗(x) (5.3)

Each neural network is 5 layers deep, while each hidden layer consists of a linear
layer, followed by batch normalization, dropout and ends with ReLU as activation
function. Deeper networks had no benefit in performance while increasing the time
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Figure 5.5: Illustration of neural network architecture. It consists of 4 hidden layers
with a linear layer, batch normalization, dropout and ReLU as activation function.
The output layer is a linear one outputting νpeak and σ2. A softplus further ensures
σ2 > 0.

needed for training. The output layer following the last hidden layer is a simple
linear layer outputting νpeak and σ2. To the later one was additionally a softplus
applied to enforce positive deviation. The architecture is illustrated in figure 5.5.
Additionally, both the input and output are standardized, i.e. scaled such that each
individual input and output have zero mean and unit deviation. Unfortunately, this
is a problem to the binning feature set, since it uses zero to indicate missing data,
which is now a valid value. This is circumvented by reassigning zero to to these
values after standardization and adding a mask to the input with one marking valid
and zero missing data, thus expanding the input dimension from 26 to 52.

Each individual model has been trained for up to 800 epochs, but only the best one of
each ensemble member with regard to the loss on an validation set has been saved,
which has been achieved in most cases in only a few hundred epochs. The validation
set holds 1,000 samples. Both sets are organized in batches of 64 samples. If the
performance did not improve for 10 epochs, the learning rate has been reduced to a
tenth starting with the values listed earlier.

Figure 5.6 shows the performance of the neural network ensemble for each feature
set. It is the best performing algorithm so far especially in regard to prediction inter-
val width. Surprisingly, despite earlier results the usage of compressed sensing seem
to actually slightly harm the performance. An explanation to this might be that the
neural network performs so well, that it became susceptible to the noise introduced
by compressed sensing if there is only few data available outweighing its benefits.
As stated earlier, compressed sensing fails in these cases and starts to hallucinate.
The autoencoder despite outperforming compressed sensing still underlies to the
binned data, which is thus again the best feature set.

The neural networks error distribution is shown in figure 5.7 and behave for the
prediction error as expected. The distribution for the median prediction interval
however is remarkable as they are the only ones where the edge cases, i.e. samples
with very low or very high νpeak, are not predicted with relative to other frequency
ranges wide intervals. Especially the one trained on binned data handles these cases
very well.

To further justify the usage of an ensemble instead of a single model, figure 5.8 shows
the performance of a single ensemble member trained on the binned feature set. The
edges cases, i.e. very small or high νpeak, which were already problematic in earlier
models are more well behaved in the ensemble. Especially the prediction interval
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(a) Predictions for binned features (b) Prediction Intervals for binned features

(c) Predictions for compressed sensing (d) Prediction Intervals for compressed
sensing

(e) Prediction for autoencoder (f) Prediction Interval for autoencoder

Figure 5.6: Illustration of the performance of neural networks for each feature set.
The left column shows a histogram of the predicted νpeak against the ground truth
with the median as a solid and the 80% quantile interval as dashed black lines. The
right column shows the centered prediction interval (95%) sorted by their width with
the ground truth marked as orange dots. Additionally the percentage of outliners
above and below their respective prediction interval is shown.
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(a) Median absolute error (b) Median PI width

Figure 5.7: Median absolute error of the prediction and the median prediction in-
terval width for neural networks on the test set for each feature set. The curve was
created by a moving window and smoothed with a cubic spline. The dashed line
shows the density of the ground truth in the test set.

Figure 5.8: Performance of a single member in the neural network ensemble trained
on binned data. Again, the left one shows the histogram with the median as solid
and the 90% and 10% as dashed black lines, while the right one shows the prediction
interval width including coverage rate as indicated with ratio of outliners above and
below.
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Figure 5.9: Performance of a combination using an RNN encoder and a FCN estima-
tor. the predicted νpeak against the ground truth with the median as a solid and the
80% quantile interval as dashed black lines. The right column shows the centered
prediction interval (95%) sorted by their width with the ground truth marked as or-
ange dots. Additionally the percentage of outliners above and below their respective
prediction interval is shown. Note that this model is very likely biased.

Parameter Value
Layer 1 144 (17.10%)
Layer 2 88 (26.39%)
Layer 3 72 (2.11%)
Layer 4 48 (18.23%)
Learning rate 3.105× 10−3

Weight decay 5.485× 10−5

Table 5.4: Hyperparameters after tuning used to train the direct combination of
RNN encoder with an FCN. Each layer has two hyperparameters: The number of
neurons in that layer and the dropout chance noted in parentheses behind.

has not only shrunk in width but even shows a better coverage.

One might wonder wether the extra step with the autoencoder hurts the perfor-
mance in comparison to a direct approach of training the RNN encoder alongside
the FCN estimator. Such a model was trained to answer the question. Like the other
ones before it consists of an ensemble of 20 individually trained models using the
hyperparameters shown in table 5.4. Its performance is illustrated in figure 5.9 and
is similar to the unbiased ones shown before. Therefore the autoencoder did not
harm the performance. Surprisingly, it is still slightly worse than the one trained on
the binned feature set.

5.4 Summary

Table 5.5 gives a quick overview of all previously shown models by providing the
median absolute error and median prediction interval width with the 25% and 75%
quantile calculated on the test set. As indicated by the median absolute error most
models perform similar on the prediction precision with the exception of gradient
boost performing far worse and neural network far better both trained on binned
data. A different picture is drawn by the median prediction interval width: As men-
tioned earlier the gradient boost has too wide prediction intervals to be of any use.
The random forest has far narrower prediction intervals but even the best one is out-
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Binning Compressed Sensing Autoencoder
Random
Forest

0.300+0.313
−0.170 0.376+0.324

−0.189 0.400+0.310
−0.200

Gradient
Boost

0.469+0.427
−0.257 0.356+0.330

−0.195 0.403+0.333
−0.220

Neural
Network

0.265+0.242
−0.133 0.314+0.257

−0.173 0.316+0.255
−0.167

(a) Median absolute error

Binning Compressed Sensing Autoencoder
Random
Forest

2.583+1.325
−0.683 2.301+1.084

−0.501 3.100+0.973
−0.900

Gradient
Boost

4.675+0.445
−1.176 4.264+0.544

−1.158 3.804+1.058
−0.835

Neural
Network

1.687+0.307
−0.197 2.074+0.307

−0.197 2.085+0.417
−0.261

(b) Median Prediction Interval Width

Table 5.5: Summary of the models performance showing the median absolute error
of the prediction and the median prediction interval width including their 25% and
75% quantile.

performed by any neural network. Once again the neural network trained on binned
data performs the best making it the overall leader. Interestingly, from a prediction
interval point of view each algorithm performed best on a different feature set.





CHAPTER 6

Implementation: BlaSE

Following rhe results obtained through this thesis a tool was created with the intent
of being usable out of the box: BlaSE (Blazar Synchtroton Peak Estimator) 1 uses
an ensemble of neural networks processing a binned version of the blazar’s SED as
described earlier to predict νpeak with an 95% prediction interval.

The training set has been split 5-folds to allow bagging, i.e. training with only 4
out 5 splits to leaf the remaining as unseen data, and underwent the same data pre-
processing including augmentation as described before. This makes it possible to
evaluate the model on the whole training set by using an OOB estimation. For each
possible bagging 5 models were trained, thus for each data set member an ensemble
of 5 models can be used. For truly unseen data even 25 models are available.

Metric Value
Median Absolute
Error

0.255+0.204
−0.140

Median Prediction
Interval Width

1.702+0.268
−0.204

Table 6.1: Performance of BlaSE showing the median absolute error and the median
prediction interval width including their 25% and 75% quantile.

Figure 6.1 and table 6.1 show the performance of BlaSE evaluated on the whole train-
ing set using OOB estimation. The prediction precision further improved with re-
spect to same method trained without bagging while the prediction interval widths
are equally distributed.

Previously no justification for the assumption of a gaussian distributed error was
made. This is now made up for as it is easier with more evaluation samples due
to the OOB estimations. Figure 6.2 shows the estimation error distribution for se-
lected prediction intervals denoted as 1σ alongside the expected and a fitted gaus-
sian distribution. One can not only see that the estimation error is indeed gaussian
distributed, but also that the calculated prediction interval matches the fitted one.

To be of practical use a model should never produce overconfident but false estima-
tions, i.e. huge prediction error but a small prediction interval. To test this BlaSE
was fed with made up data that show no resemblance to typical SEDs of blazars.

1https://github.com/tkerscher/blase or via pip install blase

https://github.com/tkerscher/blase
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(a) Histogram of the pre-
diction including the me-
dian as a solid as well as
the 10% and 90% quantile
as dashed black lines.

(b) Centered prediction
inerval widths with the
ground truth marked as
orange dots. Additionally,
the coverage is denoted
as percentage of outliners
above and below the in-
tervals.

(c) Distribution of me-
dian absolute error in
prediction and median
prediction interval width.
Both curves are produced
by a moving average and
smoothed using a cubic
spline. Additionally,
shown as dotted black
line is the distribution of
the test set.

Figure 6.1: Illustration BlaSE’s performance as established before using the OOB
estimation, i.e. the whole unaugmented training set is used.
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Figure 6.2: Distribution of estimation error with a specific prediction interval noted
as 1σ alongside the expected gaussian distribution as solid and the fitted one as
dashed line.

Figure 6.3: Plots of non blazar-like data.

Function Peak Error
(x− 17.0)2/50− 15.0 15.100 2.290
−13.5 (const) 15.011 2.409
cos(x)/2− 14.0 15.150 2.480
Θ(x− 15.0)− 14.75 16.308 2.008

Table 6.2: Prediction of non
blazar-like data.
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Figure 6.4: Plots of SEDs where BlaSE disagrees with the 4LAC-DR2 catalogue about
the class of the blazar as determined by the synchrotron peak. The vertical green line
shows the catalogue value while the orange shows the new estimate with the error
bar indicating the 95% prediction interval.

Figure 6.3 and table 6.2 shows the functions used to generate the data as well as the
produced estimates. All estimates show a rather large prediction interval above 2.0
clearly indicating that the model is not sure about its prediction. The latter is most
of the times around 15.1, which seems to be the models "default" estimation.

Finally, BlaSE was applied to the 4LAC-DR2 [The Fermi-LAT collaboration, 2019]
catalogue. In its actual version it consists of 3,511 entries of which 1,053 have not
been used to train the model and 706 were not even assigned a νpeak. If a entry was
also part of the training set like before an OOB estimate was made, thus for all entries
in the catalogue a genuine estimate was made. The results can be found in BlaSE’s
repository.

Figure 6.4 shows some particular interesting examples as on these the 4LAC-DR2
catalogue and BlaSE disagree about the blazar’s classification. A common pitfall
here is to confuse the synchrotron with the galaxy’s thermal background radiation.
The neural network managed to overcome that challenge on several occasions.



CHAPTER 7

Conclusion and Outlook

The thesis started off with an introduction to blazars as part of the AGN zoo as well
as an explanation of the utilized machine learning methods and algorithms. This
was followed by the modelling the data preparation process in which the data set
as produced by the VOUBlazar was parsed and sanitized, i.e. removing illogical
entries such as zero flux or values outside their error bounds. Only frequency and
energy flux density were kept to form the base feature set, which furthermore were
transformed into the decadic log space as this deemed to improve the performance.
Before any further data preprocessing a test set consisting of 700 SEDs were put aside
from the initial 3,793.

It has been shown that the data set suffers from bias as some values of νpeak are more
prominently represented than others, thus making it beneficial for latter models to
neglect the rare ones. Furthermore, some frequency ranges around 100 GHz were
measured especially for a narrow range of νpeak (mainly LSPs) allowing the models
to predict them by the mere existence of such frequencies without any meaningful
generalization while producing good results on the test set, ultimately rendering the
models useless.

The bias caused by the uneven νpeak distribution was significantly reduced by over-
sampling especially rare samples while also deleting especially prominent frequen-
cies, which also led to an increased training set size of around 10,000. This however
did not fix the second source of bias.

Three different feature sets based on the base one were proposed: Binning, recon-
struction through compressed sensing and compressing by an autoencoder. Differ-
ent and uneven binning widths with the goal of an even density were tested but
turned out to make little difference. Since biased bins had to be neglected the one
with the best frequency coverage without being to fine-meshed was chosen. The
compressed sensing tried to reconstruct missing data and thus removing the bias
allowing to use all the available data. For this purpose a custom basis in which the
SEDs have a sparse representation was made. Lastly, the autoencoder used bidirec-
tional RNN for both the en- and decoder to compress the binned data. This allowed
smaller bins without leaving most of them empty, but the biased ones had once again
to be neglected.

The feature sets were used as input for three different machine learning algorithm
thus totalling in 9 distinct models. The algorithms were random forest, gradient
boosting and neural networks. Their task was to not only predict νpeak but also to
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produce a prediction interval. The random forest showed decent performance on all
feature sets and improved with compressed sensing. The gradient boosting however
could not provide useful results. The neural networks uses a gaussian log likelihood
as loss function and performed on all feature sets very well with the one trained on
the binned one being the overall best one. It seems that this algorithm performed
that well, that it became susceptible to the noise introduced by the other feature
sets. Also noteworthy is that the second best model prediction wise was the random
forest trained on binned data, which was magnitudes faster to train and far easier
to utilize than the other algorithms. It shows that simpler models and algorithm are
worth considering especially if time and resources are scarce.

Using the results of this thesis BlaSE, a ready to use tool to predict νpeak with a pre-
diction interval was made. Following the previously best model it consisted of an
ensemble of neural networks trained using a gaussian log likelihood. By further us-
ing bagging, the whole training set could be used for evaluation. Finally, the tool
was used to produce estimates for the 4LAC-DR2 catalogue and not only filled in
706 missing synchrotron peaks but also overcome some caveats in their estimation
such as confusing the galaxy’s thermal radiation with the synchrotron to a certain
degree.

Unfortunately, due to the very nature of a bachelor thesis some ideas could not be
tested. The original design of the autoencoder was trained on synthetic data, provid-
ing the encoder only a subset of the actual data to mimic real measurements while
the decoder tries to reconstruct the whole SED. The training took several days but
finally failed to reconstruct real SED leaving no time for a second try. Since the sim-
ulation of SEDs is a difficult task this was might the result of bad synthetic data.
One might also want to try replacing the RNN of the decoder with a simple FCN.
Since only frequency and energy flux density were used there might be room for
improvement in the selection of data features. Because all feature sets used some
sort of binning the variability of the blazar was also lost providing even more data
to gather.

Ultimately, the most important thing for machine learning is the amount of available
data. With new sources of data becoming available in the next years such as the
James Webb Space Telescope or multi messenger astronomy more accurate models
will be possible even using the methods showed in this thesis.



APPENDIX A

Binning

Begin End
1 6.90 8.30
2 8.30 9.10
3 9.10 9.30
4 9.30 9.50
5 9.50 9.80
6 9.80 10.10
7 10.10 10.50
8 10.50 10.90
9 10.90 11.10

10 11.10 11.30
11 11.30 11.50
12 11.50 12.50

Begin End
13 12.50 13.30
14 13.30 13.60
15 13.60 13.90
16 13.90 14.20
17 14.20 14.50
18 14.50 14.70
19 14.70 15.10
20 15.10 16.70
21 16.70 17.20
22 17.20 17.50
23 17.50 17.70

Begin End
24 17.70 17.90
25 17.90 19.70
26 22.10 22.40
27 22.40 22.70
28 22.70 23.30
29 23.30 23.50
30 23.50 23.90
31 23.90 24.40
32 24.40 24.70
33 24.70 25.30
34 25.30 27.50

Table A.1: Bin edges used for data augmentation.

Begin End
1 7.05 8.25
2 8.25 8.80
3 8.80 9.30
4 9.30 9.60
5 13.05 13.25
6 13.25 13.45
7 13.75 13.85
8 13.85 14.00
9 14.00 14.45

10 14.45 14.55
11 14.55 14.65

Begin End
12 14.65 14.75
13 14.75 14.95
14 14.95 15.35
15 16.65 17.15
16 17.15 17.40
17 17.40 17.75
18 17.75 17.95
19 17.95 19.65
20 22.15 22.35
21 22.65 22.75
22 23.15 23.30

Begin End
23 23.30 23.50
24 23.65 23.80
25 24.15 24.30
26 24.65 24.80
27 24.80 25.00
28 25.00 25.15
29 25.15 25.35
30 25.35 25.65
31 25.65 26.15
32 26.15 27.45

Table A.2: Bin edges for 0.1 base width. Values are given in log space.
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Begin End
1 6.90 8.30
2 8.30 9.10
3 9.10 9.30
4 9.30 9.50
5 12.50 13.30
6 13.30 13.60
7 13.60 13.90
8 13.90 14.20
9 14.20 14.50

Begin End
10 14.50 14.70
11 14.70 15.10
12 15.10 16.70
13 16.70 17.20
14 17.20 17.50
15 17.50 17.70
16 17.70 17.90
17 17.90 19.70
18 22.10 22.40

Begin End
19 22.40 23.10
20 23.10 23.30
21 23.30 23.50
22 23.50 23.90
23 23.90 24.40
24 24.40 24.70
25 24.70 25.30
26 25.30 27.50

Table A.3: Bin edges for 0.2 base width. Values are given in log space.

Begin End
1 7.05 8.55
2 8.55 9.30
3 9.30 9.75
4 12.20 13.35
5 13.35 13.65
6 13.65 14.10
7 14.10 14.55
8 14.55 14.85

Begin End
9 14.85 15.45

10 16.65 17.25
11 17.25 17.55
12 17.55 17.85
13 17.85 19.65
14 22.05 22.50
15 22.50 22.95

Begin End
16 22.95 23.25
17 23.25 23.55
18 23.55 24.00
19 24.00 24.45
20 24.45 24.90
21 24.90 25.35
22 25.35 27.45

Table A.4: Bin edges for 0.3 base width. Values are given in log space.

Begin End
1 6.75 8.75
2 8.75 9.25
3 9.25 9.75
4 12.25 13.25
5 13.25 13.75
6 13.75 14.25

Begin End
7 14.25 14.75
8 14.75 16.00
9 16.00 17.25

10 17.75 19.25
11 19.25 22.75
12 22.75 23.25

Begin End
13 23.25 23.75
14 23.75 24.25
15 24.25 24.75
16 24.75 25.25
17 25.25 27.75

Table A.5: Bin edges for 0.5 base width. Values are given in log space.
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