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Abstract

The IceCube Neutrino Observatory searches for neutrino point sources in order to
explain the origin of the diffuse high-energy neutrino flux detected in 2013. The
maximum likelihood method of the standard point source search analysis is intro-
duced. An improvement to the approach of this point source search analysis, by
using new software tools and a kernel density estimation (KDE) for the generation
of the likelihood function’s probability density functions (PDFs), is presented in this
thesis. It summarizes my contribution to the SkyLLH framework and the develop-
ment of the KDE Tool project. The implemented adaptive KDE method shows a
significantly better spatial PDF description, which is especially pronounced towards
lower energies (∼ 10 TeV) and soft spectrum sources. The likelihood fit bias for the
number of injected signal events is reduced substantially for soft spectrum sources.
Furthermore, the next steps for potential further improvements are discussed.
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Chapter 1

Introduction to Neutrino Astronomy

The physics branch of elementary particle physics started with J. J. Thomson’s
discovery of the electron in 1897 [1]. It laid the foundations for figuring out the
structure of an atom and a particle-based composition of matter. In 1911, Lord
Rutherford performed an experiment of α particles scattering through a thin foil
of gold and concluded that the atom consists of a small massive nucleus and light
electrons around it. In 1932, J. Chadwick explained that the origin of radiation
from beryllium bombarded by α particles is caused by a neutral particle with a
great penetration power – the neutron [2]. Shortly afterwards E. Fermi developed
the theory of β-decay, naming the missing third particle neutrino. The existence of
neutrinos was confirmed experimentally through the studies by Cowan and Reines
of the inverse β-decay [3].

At the same time, measurements of ionization in air led to the discovery of cosmic
rays (CRs). In 1912, Victor Hess measured the ionization rate dependency on altitude
by flying in a balloon up to 5 km [4]. He found that the rate increases with altitude
and concluded that ionizing particles are extraterrestrial. Due to the development
of particle detectors, e.g. Wilson-cloud chamber, Geiger tube, and photographic
emulsion chambers, many new particles were discovered by analyzing trajectories of
tracks from CR interactions. Efforts to systematize the newly discovered particle zoo
led to the standard model of particle physics (figure 1.1).
Cosmic ray particles are ionized nuclei and consist of about 90% protons, 9%

alpha particles, and other heavier elements [6]. One can see the cosmic ray spectra
in figure 1.2. It shows the measured CR flux up to 1011 GeV. In comparison, the
Large Hadron Collider (LHC) [7] achieves proton-proton collisions with a centre-of-
mass energy of 14 TeV, which is equivalent to ∼ 108 GeV cosmic ray energy. The
energy spectrum can be described by a single power law with two transition regions:
the knee at ∼ 3 PeV and the ankle at ∼ 3 EeV [6].

In the last century, a spectacular astronomical event – Supernova 1987A (SN
1987A), located in the Large Magellanic Cloud (LMC), 50 kpc away [19], could be
observed at all wavelengths and in neutrinos. The first detection of neutrinos, which
do not originate from the Sun, marked the birth of neutrino astrophysics [20]. The
Kamiokande II detector observed a burst of neutrino events ∼ 18h before the optical
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Chapter 1 Introduction to Neutrino Astronomy
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Figure 1.1: Standard model of elementary particles. Figure taken from [5].

sighting [21]. In addition, the IMB and the Baksan detectors also observed a burst
of neutrino events around the same time [19].
One class of potential cosmic rays and neutrino sources are Active Galactic Nuclei

(AGNs). An AGN is an extremely luminous object at the center of a galaxy. The
approximate structure of an AGN consists of a super-massive black hole (SMBH)
surrounded by an accretion disk and a dusty torus [22]. The gravitational potential of
a SMBH pulls matter towards the center, which in turn loses its angular momentum
in turbulent processes and heats up the accretion disk. A fraction of the AGNs
have relativistic jets perpendicular to the accretion disk. Due to the asymmetrical
structure, the observed spectrum depends on the relative position of an observer.
AGNs with the jet pointing close to the Earth form the subclass called blazars.
Because the cosmic rays are charged, they get deflected in interstellar magnetic
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Figure 1.2: Cosmic ray proton and all-particle spectra. Measured data is taken from
[8–17]. The plot was generated using [18].

fields and hence their production and acceleration site location can not be recon-
structed. One could use neutral particles (e.g. photons and neutrinos), created by
CR interactions with matter near the site location, in order to reconstruct the site
location, as they travel in a straight line. The possible types of high energy CR
production sites are summarized in the Hillas plot (figure 1.3).
Using large neutrino detectors, like the IceCube Neutrino Observatory (section 2),

one can reconstruct the direction of the neutrino source and infer properties of the
production mechanism. Because neutrinos travel unobscured, they can also act as
an alert for an interesting astronomical phenomena for other observatories.
High energy cosmic rays can produce neutrinos and photons in proton-proton and
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Chapter 1 Introduction to Neutrino Astronomy

Figure 1.3: The Hillas plot shows the size and the magnetic field strength of possible
acceleration sites. Objects above the diagonal line could accelerate protons up to
1020 eV. Figure taken from [23].

proton-photon collisions [24]. These mentioned collisions result in pion π generation,
that decay into electrons e, photons γ, and neutrinos ν:

π+ → µ+νµ → e+νµν̄µνe

π− → µ−ν̄µ → e−ν̄µνµν̄e

π0 → γγ,

(1.1)

where the bar symbol over a neutrino denotes an antineutrino. Assuming an equal
distribution of pions, the ratio of produced neutrino flavors close to the source is
(νe : νµ : ντ ) = (ν̄e : ν̄µ : ν̄τ ) = (1 : 2 : 0). Due to the long travel path and non-
vanishing neutrino mass eigenstates, neutrinos oscillate between flavors and arrive
at the Earth with (νe : νµ : ντ ) = (ν̄e : ν̄µ : ν̄τ ) = (1 : 1 : 1) flavor ratio [25].
Multi-messenger astronomy strives to combine received information from photons,

cosmic rays, neutrinos, and gravitational waves [26]. It could lead to a better under-
standing of their production sites. The messengers (excluding gravitational waves)
and their general propagation routes to the Earth are shown in figure 1.4.

4



Ear th

air shower

G amma rays
They point to their sources, but they 
can be absorbed and are created by 
multiple emission mechanisms.

Neutrinos
They are weak, neutral  
particles that point to their 
sources and carry information 
from deep within their origins.

Cosmic  rays
They are charged particles and 
are de�ected by magnetic �elds.

AG N s,  S N R s,  G R B s. . .

b l a c k  
h o l e s

ν
ν

ν
p

p

γ

γ

γ

ν
ν

Figure 1.4: Propagation and detection scheme of different messengers from the source.
Figure taken from [27]

5





Chapter 2

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory is located at the geographic South Pole near the
Amundsen–Scott South Pole Station. It is an in-ice array of 5160 digital optical
modules (DOMs), that instruments a 1 km3 volume of Antarctic glacial ice. The
detector construction was completed on December 18, 2010. The structure of the
IceCube detector is shown in figure 2.1. The in-ice array consists of 86 vertical
strings, each string containing 60 DOMs, deployed between 1450 m and 2450 m below
the surface. 81 stations at the surface of the ice form the IceTop array, which detects
cosmic ray initiated air showers and provides a veto region for the downward-going
neutrino detection. Each IceTop station contains 2 ice-filled tanks with 2 DOMs per
tank.
The observation of neutrinos relies on the fact that when neutrinos interact with

ice they create charged particles, moving faster than the phase velocity of light in ice
and emitting Cherenkov radiation [29]. Resulting Cherenkov photons are detected
in the in-ice array of DOMs. Such a huge detector volume is needed due to the very
low neutrino interaction cross sections. The reconstruction of the incident neutrino
direction and energy uses the recorded photon data in the whole array with the
timing information and the model of light propagation in ice.

2.1 Neutrino Detection

Three generations of neutrinos are present in the standard model of particle physics
(figure 1.1). They interact with matter (e.g. ice) via the weak force in two interaction
channels, called “charged current” (CC) and “neutral current” (NC). An example of
the CC interaction channel can be seen in figure 2.2, where l is a lepton (electron,
muon, or tau) and νl is a respective flavor neutrino. The charged vector boson W±

is the CC interaction mediator. A similar weak force interaction can also happen
with quarks (q). The NC interaction channel is mediated via the Z0 vector boson
(figure 2.3). It does not change the flavor of the interacting particle.
IceCube detects neutrinos with an incident neutrino energy above ∼ 100 GeV [30].
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Figure 2.1: The hexagonal structure of the IceCube detector. Deployment seasons
of the strings are indicated by different colors at the surface of the ice. The strings
form a triangular grid with a horizontal spacing of about 125 m. Figure taken from
[28].

The dominant scattering process in this energy regime is deep-inelastic scattering
(DIS) [31]. Neutrino interactions with the nucleus of the ice can be summed up to

νl +N → l− +X (CC)
ν̄l +N → l+ +X (CC)
νl +N → ν ′l +X (NC)
ν̄l +N → ν̄ ′l +X (NC),

(2.1)

where N is a nucleus and X is the remnant of N . The remnant X can produce
a hadronic cascade, while the charged lepton can propagate through the detector
material, emitting Cherenkov radiation. The neutrino interaction cross section with
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Figure 2.2: An example of “charged current” interaction vertices.
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Figure 2.3: An example of “neutral current” interaction vertices.

electrons in the target material is usually very small and can be neglected. It only
has to be taken into account in the Glashow resonance energy range. The Glashow
resonance [32] describes a steep increase of the electron antineutrino cross section
with the electron as a target (equation 2.2) at around 6.3 PeV neutrino energy.

ν̄e + e− →W− (2.2)

Cross sections of the before mentioned neutrino interactions are shown in figure 2.4.
The most interesting neutrino interaction for the point source search is the CC

interaction, producing a propagating muon, as it leaves a track like signature inside
the detector. Using the track as a long lever arm, the reconstruction algorithm can
reconstruct the incident neutrino direction with an angular resolution of 1° and better
[33]. This allows to pinpoint the possible astronomical object, which produced the
reconstructed neutrino. The produced electron leaves a cascade like signature, which
direction can be reconstructed with an O(10°) median angular resolution [34]. The
produced tau leaves a double bang like signature, with the angular resolution lying
between the cascade and the track resolution, depending on the separation length
between the two cascades. The first cascade forms at the tau production vertex. It
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Chapter 2 The IceCube Neutrino Observatory

Figure 2.4: Neutrino- and antineutrino-nucleon cross sections for CC and NC inter-
actions. In addition, the Glashow resonance of the electron antineutrino-electron
cross section is shown. Figure taken from [6].

is followed by a track and the second cascade at the tau decay vertex. Signatures of
propagating leptons are shown in figure 2.5.

(a) e – cascade. (b) µ – track (c) τ – double bang

Figure 2.5: Signatures of three different propagating leptons. The color scale ranges
from early hits (red) to late hits (blue). The bubble size is proportional to the
logarithm of the deposited energy inside the DOM. Figures taken from [35].

The Cherenkov radiation emission angle, θC , from the moving charged particle is

cos(θC) =
1

nβ
, (2.3)

where n is the refractive index of the medium and β is the ratio between the particle’s
velocity and the speed of light. In the IceCube detector θC is about 41° [36]. The
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2.1 Neutrino Detection

number of Cherenkov photons emitted by a single charged particle is given by Frank-
Tamm formula [37]:

dN

dxdλ
=

2πα

λ2
sin2(θC), (2.4)

where α is the fine-structure constant, dλ is a wavelength range, and dx is a path
length. The radiation appears blue, because its intensity is inversely proportional to
the square of the wavelength.

2.1.1 Digital Optical Module

The Cherenkov radiation photons in ice are collected using digital optical modules
(DOMs). The main part of a DOM is the photo-multiplier tube (PMT), which can
detect even single photons. DOMs use the 10′′ diameter Hamamatsu R7081-02 PMT,
facing downwards in the bottom glass hemisphere. It is secured with a high-strength
silicone gel, which provides a mechanical support to the whole internal structure of
the DOM components and a good optical coupling between the PMT and the glass
sphere. The PMT is specified for the wavelength range from 300 nm to 650 nm, with
a peak quantum efficiency around 25% near 390 nm [38]. A schematic view of a DOM
is shown in figure 2.6.

Figure 2.6: A schematic view of the IceCube digital optical module. Figure taken
from [39].

The main board is located around the PMT neck. It embeds a data-acquisition
computer, controlling all devices inside the DOM and communicating with the data

11
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acquisition system on the surface. An important main board function is the digitiza-
tion of recorded PMT waveforms. It uses two types of custom integrated circuits: an
analog transient waveform digitizer (ATWD) [40] and a fast analog-to-digital con-
verter (fADC). They cover the recording durations of 427 ns and 6.4µs, respectively
[38]. Two sets of ATWDs are used to reduce deadtime.
The information level sent out to the surface depends on the local coincidence

condition. In the case when only a single DOM exceeds 0.25 photoelectron (PE)
threshold, a time stamp and a brief charge summary are sent to the surface. If
a local coincidence event (when a nearest or next-to-nearest neighbor DOM also
exceeds the threshold within ±1µs) is registered, the full digitized waveform is sent
out.

2.1.2 Ice Properties

In order to accurately reconstruct the incident neutrino direction and energy from
the registered photons, one needs to know the optical ice properties, e.g. effective
scattering and absorption lengths. The in situ measurements of light scattering and
absorption started since the AMANDA [41] experiment, which precedes IceCube.
They found that all air bubbles in ice have transformed into the solid phase at around
1500 m below the surface [42] and no longer influence the optical ice properties. The
optical ice properties below 1500 m depend almost only on the dust concentration in
ice.
The six-parameter ice model was introduced in [36]. It describes the global fit

of the likelihood function between simulated and recorded events. As each DOM
contains an LED flasher board, a brief flash of photons can be produced. The
resulting light distribution can be recorded with other DOMs. The thickness of the
ice layer parametrization was arbitrary chosen to be 10 m.
The currently used ice model is the South Pole Ice (SPICE) 3.2.1 model [43] (the

optical ice properties are shown in figure 2.7). It adds the ice anisotropy [44], an LED
beam as a 2D Gaussian approximation, and a relative DOM efficiency as additional
fit parameters of the likelihood function. To measure photon distributions, LEDs
of all DOMs on 85 strings were flashed and recorded on a single string [45]. The
simulation of a direct photon propagation in ice was performed using the photon
propagation code (PPC) [46]. It was used to fit the ice model parameters against
the measured data.

2.2 Event Reconstruction

The event can be reconstructed after the information is received from all DOMs.
Using a feature extraction pulses, containing the time and charge information, are

12



2.2 Event Reconstruction

Figure 2.7: The SPICE 3.2.1 model [43]. Dashed red lines show the effective scat-
tering (top) and absorption (bottom) lengths dependency on depth. One can see a
dust layer impact between 2000 m and 2100 m. Figure taken from [47].

extracted from the registered waveforms. A short summary of the event direction
and energy reconstruction algorithms is presented in the following sections.

2.2.1 Direction and Angular Error

The simplest and fastest algorithm of the event direction reconstruction is Linefit
[48]. It ignores the geometry of the Cherenkov cone and the optical ice properties.
The position vector of the muon at time t is written as

r = r0 + vt, (2.5)

where v is the muon velocity vector and r0 is the initial vertex position at time t0.
A χ2 function is defined as

χ2 =
N∑
i=1

(ri − r0 − v(ti − t0))2 , (2.6)

where ri and ti are the position and the pulse time of the ith DOM, respectively, and
N is the total number of pulses. The minimization of χ2 has an analytic solution,
yielding a vertex position and a muon velocity fit. It is usually used to seed more
sophisticated reconstruction methods [49].

13



Chapter 2 The IceCube Neutrino Observatory

Methods like the single photo electron (SPE) fit and the multi photo electron
(MPE) fit [50] take into account the Cherenkov angle and optical ice properties.
They assume a single infinitely long muon track and introduce a relative arrival time
(time residual) variable as

tres ≡ thit − tgeo, (2.7)

where the geometrical photon arrival time is

tgeo = t0 +
p̂ · (ri − r0) + d tan θC

c
(2.8)

Here p̂ is a muon direction and d is a perpendicular distance between the track and
a DOM position. The tgeo assumes a Cherenkov photon that travels undelayed and
unscattered. Ideally, the tres distribution would be a delta function, but due to the
PMT jitter, noise, stochastic cascade production, and scattering it broadens and
shifts.
Given the track parameters as a = (r0, t0, p̂, E0), the likelihood function of exper-

imentally measured independent values xi can be expressed as

L(a|x) =
∏
i

p(xi|a) (2.9)

The SPE likelihood function, where each photon has an equal contribution, is

LSPE(a|tres) =
N∏
i

pSPE(tres,i|a) (2.10)

The probability distribution function pSPE can be obtained from the simulation of
photon propagation in ice. The minimized negative SPE likelihood returns a track
parameters fit.
Because of the scattering induced time delay, the first arrived photon to the DOM

is more likely less scattered than the following photons and carries more accurate
directional information. In order to account for this effect, the MPE method intro-
duces a modification to the SPE time probability distribution. It only uses the first
photon tres information and the number of registered hits in the DOM. The time
distribution of the first of N arriving photons is given by

pMPE(tres|a) = NpSPE(tres|a)

 ∞∫
tres

dt pSPE(tres|a)

(N−1)

(2.11)

14



2.2 Event Reconstruction

The MPE likelihood function is

LMPE(a|tres) =

NDOM∏
i

pMPE(tres,i|a) (2.12)

The updated MPE fit version is called SplineMPE. It uses multi-dimensional pe-
nalized splines to model the time probability distribution function [51]. The splines
are fit to the tabulated data of photon propagation simulation. The account of
stochastic muon energy losses at energies above 1 TeV is implemented in the Seg-
mentedSplineMPE [52] reconstruction algorithm
A basic angular error estimation in IceCube is estimated using paraboloid fit [53].

It transforms the coordinate system of the track to the one shown in figure 2.8. The
relative coordinates θ and ϕ, as the approximate coordinates in the tangent plane,
are introduced around the best fit track direction.

Figure 2.8: Paraboloid fit coordinate system. Figure taken from [53].

The likelihood space near the minimum of the direction fit is usually shaped as
a normal distribution, therefore, the log likelihood space is shaped as a paraboloid.
The paraboloid fit scans the likelihood space around the best fit position on a defined
grid, given by θ and ϕ, maximizing the log likelihood with the vertex position r as a
parameter. An ellipse that describes a 1σ error region is fit to the resulting likelihood
space. The ellipse axis σ1 and σ2 can be combined to the average circular error

σparaboloid =

√
σ2

1 + σ2
2

2
(2.13)

The σparaboloid gives the angular error estimation on the muon direction. At the low
energy range the kinematic angle introduces an additional angular error smearing,
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while at the high energies the angular error is underestimated in comparison to the
Monte Carlo (MC) simulation. In order to fix these effects the paraboloid sigma
is calibrated to match the Monte Carlo simulation data. The pull correction factor
is introduced as a function of energy, so that the median of ∆Ψ

σcorrected
paraboloid

distribution

lies at a 1.1774 value, where ∆Ψ is a great circle distance between the true and the
reconstructed neutrino directions in MC simulation. The 1.1774 value comes from
the fact that the 50% containment of a 2D normal distribution is at r = 1.1774σ.

2.2.2 Energy

The lower limit of the neutrino energy can be estimated from the collected Cherenkov
light [54]. The produced light from electromagnetic showers has a low variance with
respect to the deposited energy [55]. If the neutrino charged current interaction ver-
tex and the lepton track are contained inside the detector, the energy reconstruction
accuracy is only limited by the detector resolution. In the case of a neutral current
interaction, the resulting neutrino carries a fraction of the initial energy outside the
detector, which can not be detected and can only be estimated statistically. Both
electromagnetic and hadronic showers have similar light deposition profiles, except
that hadronic showers have a suppressed light yield due to the presence of more
neutral particles.
The vertex of registered high energy muon neutrino interaction is often outside

the detector due to the long muon track length. The average muon range in ice was
estimated to be xf = log(1 + Ei

b
a)/b, with a = 0.268GeV

mwe and b = 0.47010−3

mwe fit for
stochastic energy losses and Ei as an initial muon energy [56]. For example, the
average range of 300 GeV (10 TeV) energy muon is ∼1 km (∼6 km), respectively.
The muon energy can be determined from the track signature by observing the

specific energy loss dE/dx [57]. It is modeled as

dEµ
dx

= A+BEµ, (2.14)

where A is the energy loss due to the ionization and B is due to the stochastic energy
loss. The conventional muon energy loss estimation method sums up the detected
charge and then compares it to the simulated expected charge for a fixed energy loss
with the same track trajectory. As the photoelectron yield is expected to be directly
proportional to the energy loss rate (above the muon energy of ∼1 TeV) [57], the
dEµ/dx can be estimated and used to infer the muon energy Eµ.
An improvement to the conventional muon energy loss estimation can be made

by using the truncated mean dEµ/dx method [57]. It splits the muon track and
the detector into bins, whose edges are defined by perpendicular planes to the track.
The energy loss rate is calculated for each bin. The truncation discards some part
of the highest energy loss rate bins in order to reduce statistical fluctuations due

16



2.2 Event Reconstruction

to stochastic energy losses. Then the new energy loss rate is calculated using the
information from the remaining bins, following the conventional method algorithm.

17





Chapter 3

Point Source Search

The IceCube Neutrino Observatory discovered the existence of a diffuse flux of high-
energy astrophysical neutrinos in 2013 [58]. Since then, the search for a neutrino
point source has been an ongoing effort. The most significant result comes from the
blazar TXS 0506+056 with 3.5σ evidence for neutrino emission [59]. The currently
used likelihood formalism and point source search methods are presented in the
following sections.

3.1 Likelihood Formalism

The likelihood function is used to infer model parameters from the observed data.
It can also be used in a hypothesis testing. The current point source search analyses
use the unbinned maximum likelihood ratio test method [60].

3.1.1 Hypothesis Testing

The first step of the unbinned maximum likelihood ratio test is the definition of
the hypothesis. In general, the hypothesis is defined by making a statement about
a model and its parameters. The hypothesis testing requires a definition of the
two complementary hypotheses. They are called the null hypothesis, H0, and the
alternative hypothesis, H1 [61]. The general notation of the null and alternative
hypotheses is H0 : θ ∈ Θ0 and H1 : θ ∈ Θc

0, where Θ0 is some subset of the
parameter space, Θc

0 is its complement, and θ is a population parameter.
In order to be able to make a decision between the two hypotheses, a hypothesis

test has to be defined. It specifies for which sample values accept H0 as true and for
which sample values reject H0 and accept H1 as true [61]. This divides the parameter
space into the acceptance and rejection regions. The hypothesis test is specified in
terms of a test statistic, expressed as

λ(X1, . . . , Xn) : X → R, (3.1)

where λ is a function that maps an outcome into a scalar number. A very general
and widely applicable hypothesis test is the likelihood ratio test (LRT).
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3.1.2 Likelihood Ratio Test

The data in the point source search dataset is composed of independent events from
the signal and background component classes [60]. Therefore, a two-component
likelihood function can be defined as

L(ns,ps|D) =

N∏
i=1

[ns
N
Si(ps) + (1− ns

N
)Bi

]
, (3.2)

where ns is the mean number of signal events in the data sample D of N total events
and ps is a set of source model parameters. The source model parameters include the
source position xs = (αs, δs) and the spectral index γ of the source flux. The Si(ps)
and Bi are the values of the ith data event of the signal and background probability
density functions (PDFs), respectively.
The time-integrated signal PDF Si can be expressed as a joint probability of the

spatial and energy PDFs

Si(ps) ≡ Si(xi, Ei|ps) = SS(xi|ps)ES(Ei|xi,ps) (3.3)

By assuming that the detector introduces a Gaussian point spread function, which
is convoluted with the source position, the signal spatial PDF can be express as

SS(xi|ps) ≡ SS(∆ψi, σi|ps) =
1

2πσ2
i

exp

(
−∆ψ2

i

2σ2
i

)
, (3.4)

where ∆ψi is the spatial angle between the xs and xi, source and event positions,
respectively, and σi is the event angular resolution uncertainty.
Because the IceCube detector is located at the South Pole, the azimuth (right

ascension) dependency in the signal energy PDF, caused by the detector’s geometry,
averages out over a day, leaving that the energy PDF depends only on the zenith
(declination) of the event. Therefore, separate energy PDFs for a predefined list of
zenith bands are created and a suitable one is picked for the evaluation. This leads
to the following energy PDF form

ES(Ei|xi,ps) = ES(Ei|δi,ps) (3.5)

The background PDF expression follows the same derivation as the signal PDF,
leading to

Bi ≡ SB(xi)EB(Ei|δi) (3.6)

The spatial and energy components of the background PDF can be derived either
from the experimental or Monte Carlo simulation data.
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3.1 Likelihood Formalism

A general likelihood ratio test form for testing the null hypothesis against the
alternative hypothesis is

λ(x) =
supθ∈Θ0

L(θ|x)

supθ∈Θ L(θ|x)
, (3.7)

where Θ is the full parameter space and L is a likelihood function. In the time-
integrated point source search analysis the null hypothesis, H0, is usually defined as
a hypothesis that the data consists solely of the background neutrino events. The
alternative hypothesis, H1, is defined as a hypothesis that the data consists of the
background neutrino events and the astrophysical neutrino events, produced by a
point source [60]. The likelihood ratio test statistic, using the constructed likelihood
function (equation 3.2) and zero signal events for the null hypothesis, is defined as

TS = −2 log(Λ) = −2 log

[
L(ns = 0)

L(n̂s, p̂s)

]
, (3.8)

where n̂s and p̂s are the values which maximize the likelihood function.
A hypothesis testing can produce two types of errors. They are called “Type I

Error” and “Type II Error”. The possible outcomes are summarized in table 3.1.

Table 3.1: The two types of errors in a hypothesis testing.

Decision

accept H0 reject H0

Truth
H0 Correct decision Type I Error

H1 Type II Error Correct decision

We want to minimize the Type 1 Error to avoid a false H0 hypothesis rejection,
in other words, making a decision that there is an astrophysical neutrino clustering,
while in reality there is only a fluctuation of the background neutrino events. It is
done by specifying a level of the test – α. A level α likelihood ratio test is constructed
by choosing k such that the supθ∈Θ0

Pθ(TS(X) ≥ k) ≤ α inequality holds [61].
The analysis limits can be estimated without using the measured data. It is done

by simulating an experiment with a mean number of injected signal events µ in the
pseudo dataset. The sensitivity is commonly defined as the flux required to get a
test statistic value TSµ that is higher than the median of the null hypothesis test
statistic distribution in 90% of performed experiments. The discovery potential is
defined as the flux required to get a test statistic value TSµ that is higher than the
1− 5σ quantile of the null hypothesis test statistic distribution in 50% of performed
experiments [62]. A graphical example of the sensitivity and discovery potential test
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statistics distributions definition is shown in figure 3.1. The returned sensitivity or
discovery potential µ value relation to the flux is defined in the following section.
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Figure 3.1: Illustration for the definition of sensitivity and discovery potential.

3.1.3 Source Flux

A generic differential factorized flux of an astrophysical neutrino source, as used in
traditional IceCube point source searches, can be expressed as

dΨ(α, δ, E, t|ps)
dEdΩdAdt

= Φ0ΨS(α, δ|ps)ES(E|ps)TS(t|ps), (3.9)

where A is an area, Ω is a solid angle, Φ0 is the flux normalization, and ΨS , E , and
TS are the spatial, energy, and time profiles respectively. The spatial profile of a
point like source is defined as a Dirac δ function

ΨS(r|ps) = δ(r − rs), (3.10)

where r = (α, δ) is the celestial coordinate vector. The energy profile is usually
expressed by a power law function

ES(E|ps) =

(
E

E0

)−γ
, (3.11)

where γ is a spectral index and E0 is a reference energy (usually 100 TeV). For a
time-integrated search the time profile TS(t|ps) is a box shaped function spanning
the entire dataset livetime – unity.
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3.2 Full-Sky Scan and Trial Factor

The flux relation to the mean number of signal events is

µ = T

∫
dΩ

∫
dEAeff(E,Ω)Ψ(E,Ω), (3.12)

where T is the dataset livetime and Aeff is the detector effective area. The effective
area depends on the neutrino energy and the observation angle.

3.1.4 p-Value

Instead of setting the confidence level α and only reporting whether to accept or
reject the null hypothesis after the hypothesis testing is done, the another value of
the test statistic can be introduced. It is called p-value. The p-value allows to have
an independent measure of how strongly the null hypothesis is accepted or rejected.
A small p-value indicates a strong evidence against the null hypothesis. A graphical
example of the p-value definition is shown in figure 3.2.

TS

PD
F

accept H0 reject H0

k TSobs

p(TS|H0)
= 5%

p-value = 2%

Figure 3.2: An α level test and a p-value example. Given the α = 5%, one can see
that the TSobs rejects the null hypothesis. The p-value of observed test statistic is
p = 2%, which also indicates a strong evidence against the null hypothesis.

3.2 Full-Sky Scan and Trial Factor

A full-sky scan is an extension of the point source maximum likelihood ratio test. It is
performed by scanning the whole sky on a fine grid and maximizing the log likelihood
function (equation 3.8) with ns and γ as free parameters at each point on a grid in

23



Chapter 3 Point Source Search

order to get the maximum test statistic distribution map. Because of the completely
different muon background from the northern and southern hemispheres, the sky is
divided into two parts at the δ = −5° declination boundary [63] and each hemisphere
is scanned separately. In order to calculate a local pre-trial p-value, the background
TS distribution is generated from the data itself by randomly scrambling its right
ascension values for many trials. The scrambling removes any possible clustering
of the signal events. Finally, the two hotspots in each hemisphere with the lowest
p-value are chosen.
A trial factor has to be introduced because of a look elsewhere effect. There

can be a clustering of events in the sky from random fluctuations, even for the
pure background data. The grid scan can be seen as the number N of independent
observations, whereN is called a trial factor. It is used to compensate for the possible
random clustering. The trial corrected probability to observe no p-value lower than
pmin ≡ x in N independent observations is

P

(
min
i
{pi} < x

)
= 1− (1− x)N (3.13)

The usual trial factor N for the full-sky scan is in the order of 105.
To get a lower post-trial p-value a scan can be designed to look only at the in-

teresting positions in the sky, lowering the number of observation and making the
trial factor and its penalty smaller. For example, this is done in the source catalog
searches by scanning the locations of already registered possible neutrino sources in
γ-rays [63]. One of the possible catalog choices is the Fermi-LAT 4FGL catalog [64]
including 5065 sources above 4σ significance in γ-rays.
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Chapter 4

Towards an Improved Time-Integrated
Point Source Search

The most recent time-integrated point source search analysis was done by performing
a full-sky scan, a search within a selected source catalog, a catalog population study,
and three stacked Galactic catalog searches in 10 years of IceCube data [63]. No
discovery of a point source was made. The IceCube detector sensitivity is limited by
the collected data, which is proportional to the date collection time and effective area
of the detector, and the analysis method capabilities. Each new year of the IceCube
detector livetime makes up a smaller and smaller part of the combined dataset.
Because of that, we decided to see what could be gained by improving already existing
point source search analysis methods. A new software and mathematical formalism,
based on a kernel density estimation (KDE) approach, were developed.

4.1 SkyLLH

SkyLLH [65] is a successor of the SkyLab [66] project. SkyLab is a Python based
framework, designed to perform unbinned likelihood maximization. Due to the lack
of development guidelines, the framework became difficult to maintain and to im-
plement new likelihood analyses. To solve these issues a new framework was written
from scratch.
The SkyLLH framework is also based on Python. Within this framework the user

can develop and perform general likelihood ratio hypothesis testing. The likelihood
function can be defined using provided classes, which are based on its mathematical
objects, e.g. PDFs, PDF ratio, etc. The classes are implemented using object ori-
ented programming technique. It allows to have a hierarchical class structure and to
create common code interfaces. Hence, mathematical objects of the same kind have
the same interfaces and can be swapped.
This means that every customized mathematical object will have implementation

of at least base object methods.
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4.1.1 Structure

The SkyLLH framework contains two projects, skyllh and i3skyllh:

• The skyllh project is publicly available on the open source GitHub repository1.
It defines the core framework functionality and common code interfaces by
utilizing the abstract base class (ABC) module.

• The i3skyllh project provides proprietary code, which extends the core frame-
work functionality and is tailored to the IceCube Neutrino Observatory detector
and ongoing likelihood analyses.

The skyllh project code is structured into six modules:

• core module holds all the abstract base classes, which define the core frame-
work, and detector independent extended classes and functions.

• i3 module extends the core framework with classes specifically customized to
the IceCube detector and its data format. Additional experiments, like Fermi,
Antares, etc., can be implemented into their own modules and be available for
a combined likelihood analysis calculation.

• physics module provides classes with generic source flux models.

• plotting module contains common plotting utilities of generated objects.

• utils module holds functions extending standard Python module capabilities.

The distinct division of the framework structure fulfills one of SkyLLH design
goals – having a detector independent framework suitable for different projects. It
also allows an easy development of likelihood analyses with the combined data from
different detectors. The modular approach and defined core interfaces make the
framework more transparent and easier to maintain in the future.

4.1.2 Sample Analysis Definition

The analysis definition process in SkyLLH is realized by creating an Analysis object
with desired properties. The user can develop its own or utilize already predefined
create_analysis functions, e.g. in the diffuse_ps module the create_analysis
function creates a point source analysis object using multi-dimensional PDFs for the
signal and background likelihood function construction, generated from the Monte
Carlo data. The important create_analysis function parameters are datasets,

1https://github.com/IceCubeOpenSource/SkyLLH
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source, flux normalization, energy, and spectral index of the reference power law
flux model, and minimizer_impl.
The datasets parameter contains a list of Dataset instances. SkyLLH has pre-

defined functions for creating DatasetCollection instances of datasets, which are
currently used in most of the ongoing IceCube analyses. The desired dataset collec-
tion, containing a list of the same version datasets, can simply be loaded from the
provided data_samples dictionary. Predefined datasets can also be customized easily
by adding additional experimental, Monte Carlo, and (or) auxiliary data definitions.
In addition to the data definitions, the Dataset object can contain data preparation
functions, which modify loaded data, and data field renaming dictionaries for the
experimental and Monte Carlo datasets.
The source is defined by e.g. a PointLikeSource instance at a given location in

the sky. If the likelihood developer wants to change the source position after the
Analysis object is created, the Analysis class has a change_source method, which
applies necessary changes to all the source dependent objects of the Analysis. For
the source flux model the PowerLawFlux is created with the given flux normalization,
energy, and spectral index values.
The likelihood developer can choose the minimizer implementation from

LBFGSMinimizerImpl and NR1dNsMinimizerImpl objects. L-BFGS is a limited-
memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm, used for solving
large nonlinear optimization problems subject to simple bounds on the variables
[67]. If the likelihood developer wants to minimize only the number of signal events
ns, the one dimensional Newton-Raphson minimization method [68] is provided.

4.1.3 My contributions

My main contributions to the SkyLLH framework are presented in the following sec-
tions. Other contributions include setting up the unit tests framework, investigating
the influence of the dataset sin(δ) binning to the spline PDF creation, and fixes of
the existing code functionality and documentation.

4.1.3.1 Data samples

As mentioned earlier, in order to simplify the Dataset object creation, SkyLLH pro-
vides predefined data samples. The samples, previously defined in SkyLab and being
in the approved neutrino sources datasets list, were adapted to the SkyLLH dataset
collection structure. Each dataset collection holds the short definition, describing
properties of the used dataset, and its version. Versioning allows the likelihood de-
veloper to work using the most current dataset version, or to reproduce older analysis
results with a specific dataset version.
The datasets from the same dataset collection version are defined by providing
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name, livetime or path of a good run list file, and paths of experimental and Monte
Carlo data files. For the energy PDF creation sin(δ) and log(E) binning definitions
are added. Auxiliary data files (e.g. kernel density estimation PDFs) can also be
added by providing the paths of data files to the add_aux_data_definition method.

4.1.3.2 Trials Calculation

The generation of a test statistic distribution requires to perform many analysis
trials with pseudo data samples. Therefore, the Analysis class was extended with
the do_trials method. It simply executes the do_trial method N times, using the
given parameters, and collects returned results. For an efficient trials calculation the
possibility to utilize multi-processing was added.
The do_trial method performs an analysis trial by generating a pseudo data

sample. It contains scrambled background events and possible signal events. The
number of injected signal events is usually determined from a Poisson statistic for
a given mean number of signal events. If one is only interested in the test statistic
distribution of the null hypothesis, the mean number of signal events can be set to
zero. After the pseudo data sample is generated, the likelihood ratio function, at a
given source location, is maximized. The likelihood maximization returns the test
statistic value and the corresponding parameters, e.g. n̂s and γ̂.

4.1.3.3 Sensitivity and Discovery Potential2

The definition of the sensitivity and discovery potential was presented in section
3.1.2. Their estimation needs the null hypothesis (background only) test statistic
distribution and test statistic distributions for a given mean number of signal events
– µ. The previously presented do_trials method can be utilized to generate these
distributions.
The analysis trials calculation is a computationally expensive method. In order to

minimize unnecessary calculations, we chose to implement a binary search method.
For a given µ range the test statistic distributions are calculated at the lower and
upper range values. If the desired probability of the signal test statistic does not
exceed the 50% (for the sensitivity) or the 1−5σ (for the discovery potential) part of
the background test statistic threshold at the upper range, the lower range value gets
assigned the upper range value, while the upper range value doubles. This procedure
continues until the µ range, covering the desired probability, is found.
After the covering µ range is found, it is minimized by calculating the test statistic

distribution at the middle point of the range, and setting the lower or upper bound
of the µ range to the middle point, whichever gives a range still covering the desired

2The currently used code implementation was optimized from the one described here by reusing
calculated trials and implementing a more rigid interval search method.
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probability. This procedure is repeated until the µ range size gets smaller than the
given µ tolerance. The final µ value is linearly interpolated from the µ range bounds
at the desired probability point. To get the sensitivity or discovery potential, the
final µ value is converted to the flux using the mu2flux method, which returns the
flux in (GeV cm2 s)−1 units.

4.1.3.4 Logging

Logging is an important feature allowing the framework to be more transparent to its
user. The slightly modified version of the standard Python logging module [69] was
implemented. The Logger and Handler objects have logging and handling levels, e.g.
“Info”, “Warning”, “Error”, etc., defined. The developed debugging module provides
a functionality for setting up the desired logging level logger and the desired handling
level stream and (or) file handler.
The standard logging flow is summarized in figure 4.1. The Logger object creates a

LogRecord object and, if the record is not filtered out, it is passed to the appropriate
Handler. The Handler then checks if the record is not filtered out at the handling
level and emits the LogRecord to the stream and (or) file. By setting the appropriate
logging and handling levels one can avoid the unnecessary formatting of the log
message. This approach minimizes the additional computational costs introduced
by the logging feature.
Because the SkyLLH framework utilizes multiple processes for the parallelized

calculations, the standard Python logging flow was not supported. This issue was
solved by introducing the QueueHandler class. It collects the logged LogRecord
objects from the worker processes in a queue and passes them to the main process.
After all worker processes are finished, the main process can handle the queued
records by utilizing the standard Logger.handle method.

4.1.3.5 Documentation

In order to have a self contained documentation, the SkyLLH framework utilizes
Python docstrings of every class and method. The docstings follow the format of
numpydoc docstring guide [71]. We chose the Sphinx tool [72] for writing and gen-
erating additional HTML documentation. The Sphinx autodoc extension allows to
extract, format, and link docstrings from the code. It can automatically generate
the documentation of SkyLLH API. Using this approach the framework developer
has to maintain only the one code documentation source.
Besides the API, the HTML documentation also includes a short introduction

to the framework and the tutorial of multi-dataset time-integrated single source
analysis. The useful guides for the framework developers are separated into their
own section.
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Figure 4.1: A flowchart of the logging procedure in Python. Figure taken from [70].

4.2 Kernel Density Estimation Tool

KDE Tool is a newly developed Python software package, which main function is to
replace the current point source likelihood signal and background PDF generation
with the use of a kernel density estimation method in order to better describe them.
The tool provides a simple to use interface for the desired PDF generation, using
either a binned or an adaptive KDE method. The mathematical formalism behind
the PDF generation and the main KDE Tool methods are explained in following
sections.
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4.2.1 Kernel Density Estimation

The one dimensional probability density function of a {xi} dataset, using a kernel
density estimation method, is written as [73]

PKDE(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
, (4.1)

where K(x) is a kernel function, which is centered at 0 and integrates to 1, N is
the number of samples in the dataset, and h is a smoothing parameter – bandwidth,
which would usually tend to 0 as N goes to ∞. The normalization constant before
the sum ensures that

∫
PKDE(x)dx = 1. The D dimensional probability density

function of the {xi} dataset can be expressed using the multivariate kernel function
as

PKDE(x) =
1

NhD

N∑
i=1

K

(
x− xi
h

)
(4.2)

There exist many different alternative kernel forms (shown in table 4.1), although
the quality of the PDF description depends much more on the chosen bandwidth,
than the kernel form [74]. If not stated specifically, the Epanechnikov kernel is
used for the following calculations, as it theoretically optimizes the asymptotic mean
integrated squared error (AMISE) [75].

Table 4.1: One dimensional kernel forms with argument ranges.

Kernel name K(x)

Uniform 1
2 for x ∈ [−1, 1]

Gaussian 1√
2π

exp
(
−x2

2

)
Epanechnikov 3

4

(
1− x2

)
for x ∈ [−1, 1]

Triangle 1− |x| for x ∈ [−1, 1]

Cosine π
4 cos

(
π
2x
)
for x ∈ [−1, 1]

The proper description of the probability density function using a narrow kernel
needs large data samples, otherwise the KDE method just overfits the given data.
On the other hand, if the kernel is too wide, boundaries and narrow structures will
be smeared. This outcome can be described as a bias versus variance problem [74].
By expanding the kernel function using Taylor series one finds that the integrated
square bias size is ∝ h4, while the integrated variance size is ∝ h−1. Because of a
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finite sample size, the compromise between the introduced bias and variance has to
be made. An example of the bandwidth size influence can be seen in figure 4.2.
There exists different methods for the optimal bandwidth estimation. If the data

distribution is following a Gaussian function, one can use the Silverman’s rule of

thumb [74] estimation of the optimal bandwidth hopt =
(

4σ̂5

3N

) 1
5 , where σ̂ is the

standard deviation of the sample. If the data distribution form is unknown, one can
either use the plug-in [76] or cross validation [77] method. Both methods use the
initially generated PKDE itself for the bandwidth estimation procedure.
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Figure 4.2: A kernel density estimation with different bandwidth h values. The
data points (shown as black crosses) are drawn randomly from the standard normal
distribution.

4.2.2 Mathematical formalism

A new mathematical framework of a point source likelihood construction from the
Monte Carlo data, using a kernel density estimation method, was developed in our
group. It is completely general – compatible with any event reconstruction method
and event angular uncertainty estimator. It strives to improve the description of the
signal and background probability density functions in equation 3.2.
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The general point source likelihood can be written as

L(rs, rb|{x}, N) =
(rs + rb)

N

N !
e−(rs+rb)

∏
i

{
rs

rs + rb
f(xi|s) +

rb
rs + rb

f(xi|b)
}
,

(4.3)
where rs and rb are the generation rates of the signal and background events, re-
spectively. The data sample point xi = (direc, E

i
rec, σ

i) is defined by the observables:
drec is the reconstructed direction using the SplineMPE method, Erec is the recon-
structed energy using the truncated mean dEµ/dxmethod, and σ is the pull corrected
paraboloid angular uncertainty estimation σcorrectedparaboloid. The mentioned reconstruction
methods are presented in section 2.2.
The joint PDF of the data sample {x} is

f({x}|t = sig, bkg) =
∏
i

ft(d
i
rec|Eirec, σi)ft(Eirec, σi) (4.4)

One can obtain the 4D joint PDF of all observables from the Monte Carlo dataset
by using the 3D PDFs. The signal PDF is defined as

fsig(drec, Erec, σ| sin δs, γ) ≈ 1

2π sin(ψ)
fs(ψ|Erec, σ, γ)fe(Erec, σ| sin δs, γ), (4.5)

where the spatial PDF is defined as

fs(ψ|Erec, σ, γ) = fs(ψ,Erec, σ|γ) / fs(Erec, σ|γ) (4.6)

and the energy PDF is defined as

fe(Erec, σ| sin δs, γ) = fe(Erec, σ, sin δs|γ) / fe(sin δs|γ) (4.7)

The background PDF is expressed as

fbkg(drec, Erec, σ) =
1

2π
fb(sin δrec, Erec, σ) (4.8)

The PDFs marked with a blue box are generated using a kernel density estima-
tion method. The spatial PDF (equation 4.6) can be assumed to be rotationally
symmetric, therefore, it can be defined in the source centered coordinates. The
transformation to the source centered coordinates reduces the 2D direction observ-
able drec to the 1D ψ observable, where ψ is the spatial angle between the source
direction and the reconstructed direction. The code is implemented to work on the
log scale internally in order to improve the numerical stability.
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4.2.3 KDE Tool

KDE Tool is a Python framework extending the Meerkat software package func-
tionality. It allows the user to conveniently create a KDE object, which has already
implemented methods for the generation of multi-dimensional PDFs. The properties
of a multi-dimensional PDF, for each dimension, are defined in a model file:

• values parameter describes how to generate data. The user can choose which
dataset field to use and apply additional mathematical functions to the chosen
data.

• bandwidth parameter defines a grid of a kernel bandwidth h, which is used for
the cross validation.

• nbins parameter defines the number of bins to use in the binned PDF approx-
imation.

• range parameter can modify the PDF’s phase space. The default phase space
strictly covers the range of generated values.

The most important parts of the KDE Tool are presented in the following sections.

4.2.3.1 Meerkat

Meerkat [78] (Multidimensional Efficiency Estimation using the Relative Kernel Ap-
proximation Technique) is a software package providing a set of C++ classes for the
kernel density estimation of a multi-dimensional PDF over a given phase space. The
code implementation depends on the ROOT [79] framework. Meerkat is the main
KDE Tool dependency. It provides the implementation of the binned and adaptive
KDE generation techniques, which will be presented in sections 4.2.3.3 and 4.2.3.4.

4.2.3.2 Cross Validation

In order to be independent from a model of the data distribution in our sample,
we chose to use the likelihood cross validation technique [74] for finding the optimal
bandwidth. In general, the cross validation methods divide the sample into a training
and a validation part. The leave-one-out cross validation (LOOCV) is an exhaustive
cross validation method. It tests every possible way to divide the sample by splitting
it into N subsamples, where N is the number of data points in the sample. Each
subsample is then used once for the validation, while the remaining N−1 subsamples
are used for the generation of the PDF. This requires to do N passes over the sample
and is computationally expensive.
A non-exhaustive cross validation method is the K-fold cross validation. It splits

the sample into K subsamples, where K < N . The LOOCV method can be seen
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as a special case of the K-fold cross validation method with K = N . Choosing a K
value allows to compromise between the computation time and the cross validation
stability.
A figure of merit of the K-fold cross validation is defined as a likelihood

LCV(h) =

∑K
k=1

[∑N/K
i=1 [log(pk(xi))wxi ]

]
K

, (4.9)

where pk is the generated PDF using a kernel density estimation on K − 1 train-
ing subsamples (with bandwidth h), xi is a point from the validation subsample,
and wxi is a weight of xi. Because the LCV(h) function is not differentiable, it is
evaluated at every point of the bandwidth grid, which is defined in the PDF model
file. The final PDF is generated using all data points and the hopt bandwidth value,
which maximizes the LCV(h) likelikood. An example of the 5-fold cross validation
bandwidth scan is shown in figure 4.3.
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Figure 4.3: Slices of the 5-fold cross validation bandwidth scan at the hopt bandwidth.

4.2.3.3 Binned KDE

The following mathematical derivation follows [78]. In the limit of large data samples
(N →∞), the constant bandwidth PKDE(x) description of a dataset suffers from the
boundary effect (underestimation of the true PDF at the dataset edges). One can
notice that the PKDE(x) approximates a convolution of the Ptrue(x) with the kernel
K(x). The paper proposes a simple solution for the boundary effect correction.
The corrected Pcorr(x) probability density function is defined as

Pcorr(x) =

{∑N
i=1K(x−xi)
(U~K)(x) forx ∈ X,

0 otherwise.
(4.10)
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where the U(x) function equals 1 in x ∈ X and 0 otherwise. The ~ symbol denotes a
convolution operator. If the Ptrue(x) is flat at the boundary, the Pcorr(x) expression
returns an asymptotically unbiased estimation for small kernel bandwidths. In order
to incorporate a known Ptrue(x) behavior at the boundary, the U(x) function can be
changed into the approximation function F (x). This leads to the approximate PDF
expression

Papprox(x) =

∑N
i=1K(x−xih )

(F ~K)(x)
× F (x) (4.11)

The previously mentioned PKDE(x) approximation holds near the boundaries∑N
i=1K(x − xi) ' (F ~ K)(x), leaving Papprox(x) ' F (x). In the case the ap-

proximation function changes slowly in the inner region, the (F ~ K)(x) ' F (x)
approximation holds and Papprox ' PKDE.
Because the convolution part has to be calculated for each data point, the eval-

uation of equation 4.11 can become rather slow for large datasets. One can use
the interpolated approach, where Papprox(x) is evaluated on multi-dimensional grid
nodes and the function value is linearly interpolated

Pinterp(x) = Bin(Papprox(x)) =
Bin(

∑N
i=1K(x−xih ))

Bin((F ~K)(x))
× F (x), (4.12)

where Bin(f) denotes a multi-linear interpolation of the function f . The binned
KDE method evaluates equation 4.12 with the approximate function F (x) = U(x)
and a constant bandwidth.

4.2.3.4 Adaptive KDE

The adaptive KDE method modifies equation 4.1 by allowing the bandwidth h to
vary. The main idea of this method is to increase the bandwidth at the low data
density regions and decrease it in the regions, where data is more concentrated. This
allows to minimize bumps in the distribution tail and describe the given data more
accurately. There are two main adaptive KDE methods, called balloon estimator
and sample smoothing estimator [80, 81].
The balloon estimator is expressed as

f̂1(y) =
1

Nh(y)D

N∑
i=1

K

(
xi − y

h(y)

)
, (4.13)

where the bandwidth depends on a point at which the kernel is estimated. The main
problem of this estimator is that it typically does not integrate to 1 when applied
globally.
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The sample smoothing estimator is expressed as

f̂2(y) =
1

N

N∑
i=1

1

h(xi)D
K

(
xi − y

h(xi)

)
, (4.14)

where the kernel size is individually scaled. This estimator does not have the pre-
viously mentioned estimator problem – f̂2(y) returns a probability density function.
Its only disadvantage is that the estimator can be influenced by the data points lying
far away from the estimation location.
In Meerkat, the adaptive KDE PDF generation uses the sample smoothing esti-

mator, where the bandwidth h in equation 4.12 kernel is expressed as

h(xi) = h0P (xi)
−1/D, (4.15)

where P (xi) is an approximated local data density at the point xi, h0 is the initial
bandwidth, and D is the number of dimensions. The local data density is unknown,
therefore, one has to use another method for the initial estimation. We chose to
use the binned KDE method to estimate the initial PDF. The optimal bandwidth
value for its generation is picked using the bandwidth cross validation (equation 4.9).
After that, the initial PDF is used in the adaptive KDE method as an approximation
function F (x) and as a local data density approximation in equation 4.15. Finally,
the initial bandwidth h0 in the adaptive KDE method is cross validated, too.

4.3 Results

We start by investigating the difference between the maximum cross validation like-
lihood (equation 4.9) of the binned KDE and adaptive KDE methods. Later we
compare properties of the point source search, using the adaptive KDE method to
generate likelihood PDFs, with the standard point source search. All the follow-
ing results were generated using the Northern Tracks version-002-p05 Monte Carlo
dataset for the IC86, 2012-2016 season.
The components of the signal PDF (equation 4.5) depend on the source spectral

index γ. We investigate the spectral index influence by generating PDFs with γ values
of 2.0 and 3.5, hard and soft spectra, respectively. The background PDF component
(equation 4.8) does not depend on the spectral index. The maximum cross validation
results between the binned and adaptive KDE methods are presented in table 4.2.
From the maximum cross validation results we see that the adaptive KDE method

gives up to a few percent improvement in comparison to the binned KDE method
and is larger for higher dimensional PDFs. The limit of model independent kernel
density estimation method is reached, because the used Monte Carlo dataset does not
sample the whole parameter space sufficiently. In order to gain a larger improvement,
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Table 4.2: Maximum cross validation results between the binned KDE and adap-
tive KDE methods. “Binned KDE” and “Adaptive KDE” columns show the cross
validation figure of merit (equation 4.9) at respective hopt bandwidths. Relative

improvement is defined as L
adaptive
CV (hopt)−Lbinned

CV (hopt)

|Lbinned
CV (hopt)|

.

γ = 2.0 Binned KDE Adaptive KDE Relative improvement, %

fs(ψ,Erec, σ|γ) -1.7292814 -1.7123579 0.98
fs(Erec, σ|γ) -1.3554718 -1.35133 0.31

fe(Erec, σ, sin δs|γ) -1.3440044 -1.3262637 1.32
fe(sin δs|γ) -0.04730884 -0.04719831 0.23

γ = 3.5 Binned KDE Adaptive KDE Relative improvement, %

fs(ψ,Erec, σ|γ) -0.96526176 -0.96014804 0.53
fs(Erec, σ|γ) -0.5605257 -0.5600165 0.09

fe(Erec, σ, sin δs|γ) -0.5599171 -0.55274665 1.28
fe(sin δs|γ) -0.0507674 -0.05074739 0.04

fb(sin δrec, Erec, σ) -0.5393583 -0.52820015 2.07

one could construct the approximation function F (x) using the fact, that the ψ
distribution should approximately follow the Rayleight distribution.
For the one dimensional fe(sin δs|γ) PDF one can do a simple check between the

Monte Carlo data and the generated PDF using the binned KDE and adaptive KDE
methods. It is shown in figures 4.4 and 4.5. Both PDFs are almost identical and
closely follow the binned Monte Carlo data. Such a direct check for the higher
dimensional PDFs gets difficult to interpret, therefore, we move on to the checks,
where generated PDFs are used as an input parameter. As the adaptive KDE method
behaves as expected and gives a slight improvement in comparison to the binned
KDE method, we only check how its behavior compares to the standard point source
analysis methods.
In order to check how well the spatial part of the signal PDF compares to the

standard paraboloid approximation and the Monte Carlo data, we pick an ensemble
of events with the similar paraboloid description. This means that we need to define
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Figure 4.4: fe(sin δs|γ) PDF distribution comparison of the Monte Carlo data with
the binned KDE and adaptive KDE methods for γ = 2.0.

a “bin” in the reconstructed energy and the corrected paraboloid angular uncertainty
values.

f(ψ|Erec ∈ ∆Erec, σ
corrected
paraboloid ∈ ∆σcorrectedparaboloid) =

N∑
i=1

f(ψ|Eirec, σ
corrected,i
paraboloid)× wi

W
,

(4.16)
where wi is the weight of the Monte Carlo event. The f(ψ|Erec, σ

corrected
paraboloid) term can

be expressed either as a Rayleigh PDF or the spatial PDF (equation 4.6). The results
of different “bins” are shown in figures 4.6 and 4.7, for the spectral index values of
2.0 and 3.5, respectively. We see that the signal spatial PDF, generated using the
adaptive KDE method, improves the description of the Monte Carlo events at the
low energy regime and the distribution tails. The improvement for the soft spectra
is even larger.
The SkyLLH framework provides a native support of the KDE Tool generated

PDFs by expanding the predefined Northern Tracks dataset with auxiliary PDF
files. It also provides create_analysis function, which is designed for building the
likelihood ratio object from multi-dimensional PDFs. Therefore, using the SkyLLH
framework, one can implement the whole analysis. In order to see how well the KDE
method improves the PDFs for the likelihood function, we implemented a nsig, fit
bias test. It injects the number of signal events (described by the mean of Poisson
statistics) into a pseudo dataset and checks the number of fit signal events by the
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Figure 4.5: fe(sin δs|γ) PDF distribution comparison of the Monte Carlo data with
the binned KDE and adaptive KDE methods for γ = 3.5.

analysis. The point source position is set at (αs = 77.358°, δs = 5.693°). The results
can be seen in figures 4.8 and 4.9, for γ values equal to 2.0 and 3.5, respectively.
Ideally, the median of the number of fit signal events distribution should follow the
diagonal line, otherwise the analysis likelihood function description introduces a bias
term. The adaptive KDE method shows almost no bias for γ = 2.0. For γ = 3.5
it introduces a slight bias, due to the overestimation of the spatial PDF (figure 4.7)
tails. It could possibly be improved by using better reconstructed observables.
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Figure 4.6: Spatial PDF distribution for γ = 2.0 and different reconstructed energy
and corrected paraboloid angular uncertainty bins.
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Figure 4.7: Spatial PDF distribution for γ = 3.5 and different reconstructed energy
and corrected paraboloid angular uncertainty bins.
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Figure 4.8: The number of injected signal events fit for γ = 2.0 spectral index.
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Chapter 5

Summary and Conclusion

The origin of the detected astrophysical neutrino flux is still a mystery. This thesis
presented steps to improve the time-integrated neutrino point source search using
newly developed software tools. The introduction of the adaptive kernel density esti-
mation method for the generation of the likelihood function’s signal and background
probability density functions (PDFs) shows an improvement in the spatial PDF de-
scription and in the parameter fit result for the number of signal events. These
improvements are particularly pronounced for softer spectrum sources. The SkyLLH
framework allows a straightforward analysis implementation and the inclusion of the
PDFs, generated using the KDE Tool. The improvement of the PDF description
should lead to better analysis sensitivities and discovery potentials.
The KDE Tool will be made publicly available. Because it is analysis independent,

it could be used in other IceCube analyses to achieve the same improvements and to
solve the nsig,fit vs. µsig,inj bias problem.

In order to achieve even larger improvements in the future, one could use a Rayleigh
distribution for the construction of the adaptive KDE method approximation func-
tion. It would help to better describe the spatial PDF in the parameter space regions,
where the coverage of the Monte Carlo dataset is limited. Another potential improve-
ment could be the utilization of improved event reconstruction observables as input
for the KDE Tool. In this regard, machine learning techniques applied to the Ice-
Cube data have shown promising results in the enhanced reconstruction of the event
energy and the event angular uncertainty [82].
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